Мокрушин Артём Сергеевич

ПОЛУЧЕНИЕ ЗОЛЬ-ГЕЛЬ МЕТОДОМ ТОНКИХ НАНОСТРУКТУРИРОВАННЫХ ПЛЁНОК СОСТАВА ZrO_2 — xY_2O_3 , CeO_2 — $xZrO_2$ И TiO_2 — $xZrO_2$ (ГДЕ x=0—50 МОЛ.%) И ИХ ХЕМОРЕЗИСТИВНЫЕ ГАЗОЧУВСТВИТЕЛЬНЫЕ СВОЙСТВА ПРИ ДЕТЕКТИРОВАНИИ КИСЛОРОДА

Специальность 02.00.01 - неорганическая химия

АВТОРЕФЕРАТ

диссертация на соискание учёной степени кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)

Научный руководитель:	доктор химических наук Симоненко Елизавета Петровна
Официальные оппоненты:	Шилова Ольга Алексеевна доктор химических наук, профессор, Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук, ИО заместителя директора по научной работе
	Королева Марина Юрьевна доктор химических наук, профессор, Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химикотехнологический университет имени Д.И. Менделеева», каф. наноматериалов и нанотехнологии
Ведущая организация: Институт тонких химических технологий им. М.В. Ломоносова федерального государственного бюджетного образовательного учреждения высшего профессионального образования «МИРЭА — Российский технологический университет».	
Федеральном государственном неорганической химии им. Н Москва, Ленинский проспект, 3 С диссертацией можно ознако	на заседании диссертационного совета Д 002.021.01 при и бюджетном учреждении науки Институте общей и .С. Курнакова РАН (ИОНХ РАН) по адресу: 119991, 31. омиться в библиотеке ИОНХ РАН по адресу: Москва, реферат см. на сайте www.igic.ras.ru.

Учёный секретарь диссертационного совета кандидат химических наук

Автореферат разослан « _____» ____2019 года.

А.Ю. Быков

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования и степень ее разработанности. В потребность в время существует миниатюризации компонентов микроэлектромеханических систем и портативной электроники, в том числе химических газовых сенсоров, что дает возможность постоянного контроля газовой среды. В использовании наиболее универсальными и удобными газовыми сенсорами являются датчики хеморезистивного типа. Для детектирования кислорода, как правило, используются полупроводниковые оксидные материалы, имеющие нестехиометрию по кислороду и большое количество кислородных вакансий $(V_0^{\bullet \bullet})$ в кристаллической решетке. К таким материалам относятся TiO2, CeO2, ZrO2. Количество кислородных вакансий в них может быть искусственно увеличено при введении в кристаллическую решетку материала катионов меньшей степени окисления и/или меньшего катионного радиуса, поэтому большой интерес вызывают сложные оксиды. Толстоплёночные или объемные керамические рецепторные материалы, которые используются в химических газовых сенсорах, преимущественно позволяют детектировать кислород при рабочих температурах $(>600^{\circ}C)$, достаточно высоких что уменьшает энергоэффективность датчиков и в значительной степени осложняют процесс миниатюризации устройств на их основе. Как отмечено выше, использование сложных направленно оксидов металлов позволяет изменить количество дефектов (преимущественно кислородных вакансий $V_0^{\bullet \bullet}$) в кристаллической структуре, управляя таким образом газочувствительными характеристиками рецепторных слоёв. Золь-гель метод дает возможность получать такие наноструктурированные плёнки со строго заданным составом, а применение истинных растворов прекурсоров класса алкоксоацетилацетонатов металлов создаёт предпосылки перехода к современным методам нанесения оксидных покрытий, например, ink-jet печати высокого разрешения. Таким образом, разработка методик синтеза координационных соединений-прекурсоров и получение на их основе золь-гель методом тонких плёнок $ZrO_2-xY_2O_3$ CeO_2 - $xZrO_2$, TiO_2 - $xZrO_2$ сложных оксидов состава ДЛЯ низкотемпературного детектирования кислорода является актуальной и практически востребованной задачей.

Цель данной работы: разработка методик золь-гель синтеза высокодисперсных оксидов ZrO_2 – xY_2O_3 , CeO_2 – $xZrO_2$ и TiO_2 – $xZrO_2$ в виде нанокристаллических порошков

и тонких плёнок, исследование влияния элементного и фазового состава и микроструктуры соответствующих 2D-наноматериалов на хеморезистивные отклики на кислород, адаптация разработанной методики для ink-jet печати газочувствительного слоя состава TiO_2 –10мол.% ZrO_2 , а также изучение применимости метода молекулярного наслаивания для получения тонкой плёнки TiO_2 для детектирования кислорода.

Для достижения поставленной цели сформулированы следующие задачи:

- 1. Исследование процесса получения растворов гетеролигандных прекурсоров алкоксоацетилацетонатов циркония-иттрия, церия-циркония и титана-циркония; изучение гелеобразования при их гидролизе;
- 2. Получение высокодисперсных оксидов ZrO_2 – xY_2O_3 , CeO_2 – $xZrO_2$ и TiO_2 – $xZrO_2$ золь-гель методом в виде порошков и тонких плёнок (dip-coating), изучение их фазового состава, микроструктуры, газочувствительных свойств; выявление закономерностей влияния на отклики R_{O2}/R_{Ar} состава и микроструктуры полученных 2D-наноматериалов, температуры детектирования и содержания O_2 , изучение селективности;
- 3. Апробация раствора прекурсора алкоксоацетилацетоната титанациркония в качестве функциональных чернил для получения газочувствительной плёнки состава TiO_2 – $10\%ZrO_2$; определение чувствительности к кислороду при различных рабочих температурах, исследование селективности к O_2 по сравнению с другими газами-аналитами;
- 4. Получение на специализированной подложке тонкой наноструктурированной плёнки TiO_2 методом молекулярного наслаивания, исследование её фазового состава, микроструктуры, установление зависимости отклика R_{O2}/R_{Ar} от содержания O_2 в газовой смеси при различных температурах детектирования, изучение селективности.

Научная новизна:

1. Разработаны методы золь-гель синтеза высокодисперсных оксидов состава ZrO_2 – xY_2O_3 (где x=0, 5, 10, 15, 20, 33, 40, 50 мол.%), CeO_2 – $xZrO_2$ (где x=0, 5, 10, 20, 30, 50 мол.%) и TiO_2 – $xZrO_2$ (где x=0, 10, 20, 40, 50 мол.%) в виде наноструктурированных порошков и тонких плёнок; в качестве прекурсоров использовались гетеролигандные комплексные соединения – алкоксоацетилацетонаты

циркония-иттрия, церия-циркония и титана-циркония.

- 2. Для наноструктурированных тонких пленок составов $ZrO_2-xY_2O_3$ (x=5-50 мол.%), CeO_2-xZrO_2 (где x=0-30 мол.%) и TiO_2-xZrO_2 (где x=0, 10 мол.%), полученных золь-гель методом (dip-coating), установлены закономерности, связывающие хеморезистивный отклик на кислород с его содержанием, температурой детектирования (400, 450° C) и составом рецепторного материала. Для 2D-наноматериалов состава $ZrO_2-xY_2O_3$ (x=33, 40, 50 мол.%) выявлена возможность детектирования при температурах $350-450^{\circ}$ C не только кислорода, но и водорода. Для рецепторных материалов TiO_2-xZrO_2 (где x=0, 10 мол.%) определен факт, что при введении в диоксид титана 10 мол.% ZrO_2 происходит не только увеличение величины отклика на O_2 , но и снижение температуры детектирования до 350° C.
- 3. Изучена хеморезистивная чувствительность к кислороду и водороду при относительно низкой рабочей температуре (450°C) синтезированного золь-гель методом при температуре 700°C нанокристаллического порошка ZrTiO₄, нанесенного на специализированную подложку методом трафаретной печати.
- 4. С применением гетеролигандных прекурсоров (алкоксоацетилацетонаты титана-циркония) в качестве функциональных чернил методом ink-jet печати получены наноструктурированные тонкие плёнки TiO_2 –10%ZrO₂, изучена их чувствительность к кислороду при относительно низких температурах (350–450°C).
- 5. Систематически исследована возможность применения тонкой плёнки TiO_2 , полученной методом молекулярного наслаивания, для детектирования кислорода при низких рабочих температурах (150–300°C).

Теоретическая и практическая значимость:

Разработанные методы получения тонких оксидных плёнок могут быть использованы для создания миниатюрных, энергоэффективных сенсорных устройств, способных селективно детектировать кислород. Такие устройства могут быть широко использованы, например: в автомобильной индустрии (контроль О₂ в выхлопных газах), для количественного контроля О₂ в помещениях и в узлах различных технологических процессов, в замкнутых помещениях (шахтах, подводных лодках), в медицине для ингаляции при интоксикации, в анестезиологии для использования кислорода с наркотическими анальгетиками, а также в процессе гипербарической оксигенации.

Изученные закономерности изменения кристаллической структуры в системах $ZrO_2-xY_2O_3$, CeO_2-xZrO_2 и TiO_2-xZrO_2 (где x=0–50 мол.%), полученных золь-гель методом при относительно низких температурах, могут быть использованы для прогнозирования фазового состава и концентрации дефектов (кислородных вакансий $(V_0^{\bullet\bullet})$ и других) при изготовлении конструкционной и функциональной керамики на их основе (в том числе планарных компонентов), например, для использования в твердооксидных топливных элементах (ТОТЭ), катализе и др.

Методология и методы исследования: Для получения высокодисперсных порошков и тонких плёнок ZrO_2 – xY_2O_3 , CeO_2 – $xZrO_2$ и TiO_2 – $xZrO_2$ применён золь-гель метод, в качестве прекурсоров использованы гетеролигандные прекурсоры класса алкоксоацетилацетонатов металлов; нанесение тонких плёнок осуществлялось методом dip-coating, тонкой плёнки TiO_2 – метод молекулярного наслаивания¹, для ink-jet печати плёнки $TiO_2-10\%$ ZrO₂ использован принтер высокого разрешения². Анализ растворов прекурсоров при золь-гель синтезе осуществлялся с применением ИК- и УФ- спектроскопии, гравиметрии, а процессов гелеобразования при их гидролизе - методом ротационной вискозиметрии. Термическое поведение гидролизованных влагой воздуха ксерогелей изучалось с применением совмещенного ДСК/ТГА/ДТА в интервале от 20 до 1000°C. Фазовый состав образцов изучался с применением рентгенофазового анализа³ и спектроскопии комбинационного рассеивания⁴. Микроструктура продуктов исследовалась cиспользованием сканирующей электронной микроскопии^{3,4}. Газочувствительные свойства изучались на специально разработанной прецизионной установке.

Основные положения, выносимые на защиту:

1. Результаты синтеза и изучения особенностей формирования кристаллической структуры и морфологии наноструктурированных порошков и тонких плёнок состава ZrO_2 – xY_2O_3 (где x=0, 5, 10, 15, 20, 33, 40, 50 мол.%), CeO_2 – $xZrO_2$ (где x=0, 5, 10, 20, 30, 50 мол.%) и TiO_2 – $xZrO_2$ (где x=0, 10, 20, 40, 50 мол.%) при их получении с помощью золь-гель технологии (dip-coating и ink-jet

¹ Совместно с СПбГТИ(ТУ) (д.х.н. А.А. Малыгин и сотрудники каф. Химической нанотехнологии и материалов электронной техники)

² Совместно с ООО «АкКо Лаб»

³ ЦКП ИОНХ РАН

⁴ Совместно с МГУ (К.А. Букунов)

печать) с использованием в качестве прекурсоров гетеролигандных комплексов – алкоксоацетилацетонатов соответствующих металлов.

- 2. Закономерности влияния состава оксидного рецепторного слоя, температуры детектирования и содержания O_2 на величину отклика R_{O2}/R_{Ar} .
- Результаты экспериментального комплексного изучения чувствительности (при различных рабочих температурах), селективности чувствительности влаге при детектировании кислорода К тонкой наноструктурированной сплошной плёнкой ТіО2, полученной методом молекулярного наслаивания.
- 4. Закономерности влияния на хеморезистивный отклик концентрации O₂, рабочей температуры и числа рецепторных слоёв состава TiO₂–10 мол.% ZrO₂, нанесенных методом печати высокого разрешения с применением раствора алкоксоацетилацетоната соответствующих металлов.

Личный вклад автора: Автор работы принимал непосредственное участие в сборе и обработке литературных данных, на основании чего совместно с научным руководителем сформулированы цель и задачи исследования. Автором совместно с коллегам осуществлен золь-гель синтез и анализ наноструктурированных порошков и тонких плёнок составов ZrO₂–xY₂O₃, CeO₂–xZrO₂ и TiO₂–xZrO₂. Автором лично изучены газочувствительные свойства тонкопленочных наноматериалов, полученных методами золь-гель (dip-coating), ink-jet печати⁵, молекулярного наслаивания⁶. Автором совместно с руководителем и соавторами проведена интерпретация полученных экспериментальных данных; совместно с руководителем проведено обобщение результатов и сформулированы выводы по работе.

Степень достоверности и апробация результатов работы. Достоверность полученных результатов обеспечивается проведением исследований с использованием широкого ряда современных взаимодополняющих физико-химических методов анализа, постановкой воспроизводимых экспериментов в контролируемых условиях, отсутствием противоречий с данными, полученными другими авторами.

⁶ Совместно с СПбГТИ(ТУ) (д.х.н. А.А. Малыгин и сотрудники каф. Химической нанотехнологии и материалов электронной техники)

⁵ Совместно с ООО «АкКо Лаб»

Основные результаты представлены на V-VIII Конференциях молодых учёных по общей и неорганической химии в ИОНХ РАН, Всероссийской молодежной конференции с международным участием «Химическая технология функциональных наноматериалов» (Москва, 2015), XI Международном Курнаковском совещании по физико-химическому анализу (Воронеж, 2016), IX Международной научной конференции «Кинетика и механизм кристаллизации. Кристаллизация и материалы будущего» (Иваново, 2016), XX Менделеевском съезде по общей и прикладной химии (Екатеринбург, 2016), XIX Московском международном салоне изобретений и инновационных технологий «АРХИМЕД 2016» (Москва, 2016), 2-м Всероссийском конгрессе по сенсорному приборостроению «Сенсорное слияние» (Санкт-Петербург, Кронштадт, 2017), XXVII Международной Чугаевской конференции координационной химии (Нижний Новгород, 2017), Первой Международной конференции по интеллектоемким технологиям в энергетике (физическая химия и электрохимия расплавленных и твердых электролитов) (Екатеринбург, 2017), XI Всероссийская школа-конференция молодых ученых «Теоретическая экспериментальная химия жидкофазных систем (Крестовские чтения)» (Иваново, 2017), XI конкурсе проектов молодых ученых (Москва, 2017), Международной конференции со школой и мастер-классами для молодых Ученых «Химическая технология функциональных наноматериалов» (Москва, 2017), V Международная конференция стран СНГ «Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов и дисперсных систем «Золь-гель 2018» (Санкт-Петербург, 2018),

Работа выполнена в рамках государственного задания ИОНХ РАН и при поддержке грантов РФФИ (№ 17-33-50036, 14-03-00983, 15-29-01213, 18-03-00992, 18-33-20248).

Публикации. Основные результаты работы опубликовано в 26 печатных работах, в том числе 7 статьях в научных журналах, рекомендованных ВАК Минобрнауки России, и 18 тезисов докладов.

Объем и структура диссертации. Диссертация изложена на 188 страницах, содержит 70 рисунков и 16 таблиц. Работа состоит из введения, обзора литературы, экспериментальной части, шести глав результатов и обсуждения, выводов и списка литературы (244 наименования).

СОДЕРЖАНИЕ РАБОТЫ

Во **Введении** кратко обосновываются актуальность работы и поставленная цель, научная новизна и практическая значимость результатов, сформулированы выносимые на защиту положения.

В <u>Главе 1</u> проанализировано содержание литературных работ по тематике исследования, отражено современное состояние исследований в данной области. Рассмотрены основные типы химических газовых сенсоров, механизмы детектирования кислорода и других газов-аналитов, требования предъявляемые к кислородным полупроводниковым хеморезистивным газовым сенсорам; основные физико-химические и газочувствительные свойства ZrO₂, CeO₂ и TiO₂ и двойных систем ZrO₂—Y₂O₃, CeO₂—ZrO₂, TiO₂—ZrO₂; проанализированы альтернативные области их применения.

В <u>главе 2</u> представлены использованные в работе реактивы, оборудование и методы анализа, описаны методики синтеза прекурсоров и оксидных наноматериалов (порошков и тонких плёнок на специализированных подложках поликристаллического Al_2O_3 с платиновыми встречно-штыревыми электродами и микронагревателем).

В <u>главе 3</u> обсуждаются основные результаты диссертационной работы.

В разделе 3.1 описано получение золь-гель методом порошков и тонких плёнок ZrO_2 — xY_2O_3 (где x=0—50 мол.%) при температуре 750°C с использованием в качестве прекурсоров алкоксоацетилацетонатов соответствующих металлов. Прекурсоры синтезированы путем термической обработки раствора ацетилацетонатов циркония и иттрия в необходимых соотношения в изоамиловом спирте, в результате чего происходило частичное деструктивное замещение хелатных лигандов на алкоксофрагменты с образованием гетеролигандных комплексов $[M(O_2C_5H_7)_x(^iOC_5H_{11})_y]$ ($M=Zr^{4+}$ и Y^{3+}). Гидролиз прекурсоров осуществлялся влагой воздуха как для нанесенных методом dip-coating покрытий, так и для аликвот растворов, отобранных для получения наноструктурированных порошков оксидов соответствующего состава. После сушки ксерогели прокаливали на воздухе при 750°C. Установлено, что при увеличения содержания Y_2O_3 в системе происходит образование различных кристаллических фаз (рис. 1): $m(x=0) \rightarrow t'(x=5) \rightarrow t''(x=10) \rightarrow c(x=15) \rightarrow r(x=33)$, что сопровождается уменьшением среднего размера частиц в пленках с 38 ± 4 (x=0) до 13 ± 1 нм (x=50).

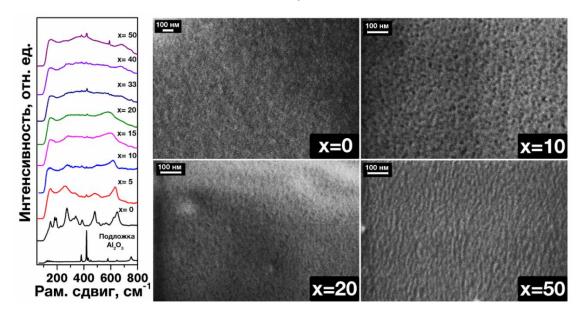


Рис. 1 Раман-спектры (слева) и микроструктура (справа) тонких плёнок ZrO_2 - xY_2O_3 (где x=0-50 мол.%)

Механизмы детектирования кислорода и водорода оксидами в системе $ZrO_2-Y_2O_3$ напрямую связаны с изменением дефектной структуры при напуске того или иного газа-аналита. При замещении ионов Zr^{4+} катионами Y^{3+} появляется избыток отрицательных зарядов, который компенсируется возникновением кислородных вакансий ($V_0^{\bullet \bullet}$):

$$Y_2O_3 \rightleftarrows 2Y_{Zr'} + V_0^{\bullet \bullet} + 3O_0^{x} \tag{1}$$

При напуске кислорода будет протекать квазихимическая реакция (2) со смещенным вправо равновесием между молекулами кислорода, итогом чего будет увеличение сопротивления оксидных плёнок при увеличении содержания кислорода в атмосфере.

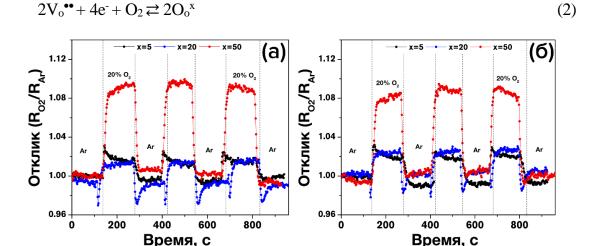


Рис. 2. Чувствительность тонких плёнок $ZrO_2-xY_2O_3$ (x-мол.%) к 20% O_2 при 400°C (a) и 450°C (б)

2D-Наноматериалы, содержащие 5–50 мол.% Y_2O_3 , показали небольшую чувствительность к высокой концентрации кислорода (20%) при рабочих температурах 350–450°C (состав ZrO_2 –10% Y_2O_3 , имеющий метастабильную структуру t'', показал отклик только при 450°C). При увеличении содержания Y_2O_3 с 5 до 50% наблюдается увеличение значения отклика (R_{O2}/R_{Ar}) с 1.02 до 1.09 (рис.2), соответственно, что связано с большей концентрацией кислородных вакансий в кристаллической решетке. Время отклика для всех образцов при рабочих температурах 400 и 450°C составило 20–22 с. Плёнки составов ZrO_2 –х Y_2O_3 (где x=33–50 мол.%), имеющие структуру $Zr_3Y_4O_{12}$ (r), показали резистивный отклик на 1% H_2 при рабочих температурах 400 и 450°C, что связано с наличием дефектов — междоузлий V_i^x , которые характерны для индивидуального Y_2O_3 и соединений с большим содержанием Y_2O_3 .

В разделе 3.2 описано получение золь-гель методом порошков и тонких плёнок CeO_2 –х ZrO_2 (где x=0–50 мол.%) при температуре $500^{\circ}C$ с использованием в качестве прекурсоров гетеролигандных комплексов — алкоксоацетилацетонатов соответствующих металлов. Синтезированные по методикам, аналогичным таковым для системы ZrO_2 – Y_2O_3 , порошки и тонкие плёнки всех составов имеют кристаллическую структуру флюорита (РФА и Раман-спектроскопия), изменение параметров решетки при введении ZrO_2 свидетельствует об образовании твердого раствора (рис. 3).

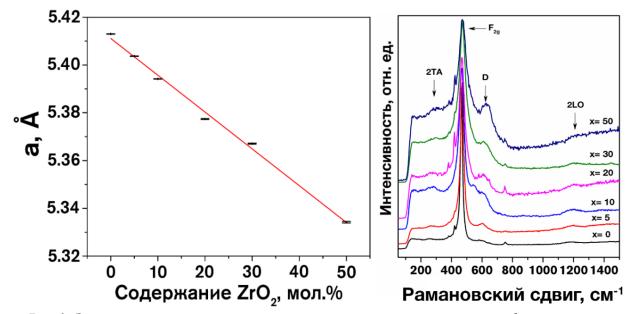


Рис.3. Зависимость параметра а кристаллической решетки типа флюорита от содержания ZrO_2 в порошках состава CeO_2 – $xZrO_2$ (где x=0–50 мол.%, слева) и Раман-спектры тонких плёнок CeO_2 – $xZrO_2$ (где x=0–50 мол.%, справа)

Введение в кристаллическую решетку оксида церия Zr⁴⁺, имеющего меньший

ионный радиус по сравнению с Ce^{4+} (0.84 (Zr^{4+}) против 0.97 Å (Ce^{4+}) [1]) позволяет сформировать дополнительные кислородные вакансии (в зависимости от содержания катионов в кристаллической решетке), ур. (3)–(4) [2]:

$$ZrO_2 = Zr_{Ce}^x + 2V_0^{\bullet \bullet} + 2O_i^{"}$$
 (3),

$$2Ce_{Zr}^{x} + O_{o}^{x} = 2Ce_{Zr}^{'} + V_{o}^{\bullet \bullet} + \frac{1}{2}O_{2}$$
(4).

Полученные тонкие плёнки состава CeO_2 –х ZrO_2 (где x = 0–30 мол.%) показали достаточно высокий отклик на кислород (0.4–20 %) при рабочей температуре 400°C (рис. 4). Детектирование кислорода для плёнок всех составов проходит в соответствии с реакцией (2), которая протекает в прямом направлении и характеризуется внедрением кислорода из газовой фазы в кислородные вакансии кристаллической решетки.

На рис. 4б представлена зависимость отклика R_{O2}/R_{Ar} от концентрации кислорода в газовой смеси. Видно, что величина отклика линейно зависит от логарифма концентрации O_2 , что типично для полупроводниковых резистивных рецепторных материалов, работающих при повышенных температурах [3].

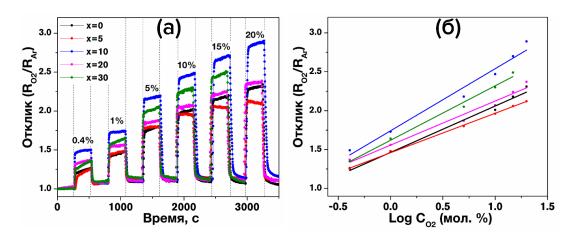


Рис. 4. Чувствительность к кислороду тонких плёнок состава CeO_2-xZrO_2 (где x=0-30 мол.%) при рабочей температуре $400^{\circ}C$

Времена отклика и восстановления несущественно зависят от состава полученных твердых растворов и изменяются с 15 до 39 с и с 28 до 72 с, соответственно,

^[1] Shannon R.D. Effective ionic radii in oxides and fluorides / Shannon R.D., Prewitt C.T. // Acta Crystallogr. B -1969. - V. 25 - No 5 - P. 925-946.

^[2] Wang X. Crystal structure, microstructure, thermal expansion and electrical conductivity of CeO₂– ZrO₂ solid solution / Wang X., Liu T., Wang C., Yu J., Li L. // Adv. Appl. Ceram. $-2017. - V. 116 - N_{\odot} 8 - P. 477-481$.

^[3] Ramamoorthy R. Oxygen sensors: Materials, methods, designs / Ramamoorthy R., Dutta P.K., Akbar S.A. // J. Mater. Sci. -2003. -V. 38 - P. 4271–4282.

при увеличении концентрации кислорода с 0.4 до 20%. Сигнал, получаемый при детектировании O_2 , отлично воспроизводится плёнками всех составов. Наибольшая величина отклика наблюдается для состава, содержащего 10% ZrO_2 (R_{O2}/R_{Ar} увеличивается с 1.49 до 2.89 при увеличении содержания O_2 с 0.4 до 20%). Наилучшая селективность по сравнению с другими аналитами (H_2 , CO, CH_4 , NO_2) свойственна для состава CeO_2 – $xZrO_2$ (x = 20 мол.%) (рис. 5).

Изучено влияние влажности на получаемый сигнал детектировании кислорода. увеличении Показано, что при влажности 0 ДО 100% наблюдается последовательное снижение сопротивления плёнки и величины отклика (в 1.3 раза) и увеличение времени отклика (в 11.7 раз) и восстановления (в 5.8 раз).

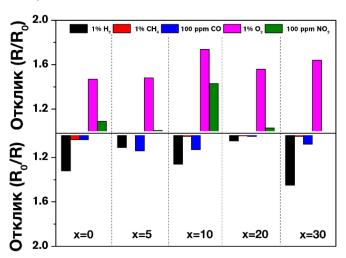


Рис. 5. Селективность тонких плёнок состава CeO_2 - $xZrO_2$ (где x = 0-30 мол.%) при рабочей температуре $400^{\circ}C$

В разделе 3.3 описывается получение золь-гель методом порошков и тонких плёнок TiO_2 – $xZrO_2$ (где x = 0–50 мол.%) при температуре 500°C по описанной выше методике. Установлено, что тонкие плёнки с x = 0–20 мол. % имеют кристаллическую структуру анатаза (Раман-спектроскопия – рис. 6), с x = 40 мол. % кристаллизуются нанодомены шриланкита $zrTiO_4$, а плёнка с x = 50 мол. % является аморфной.

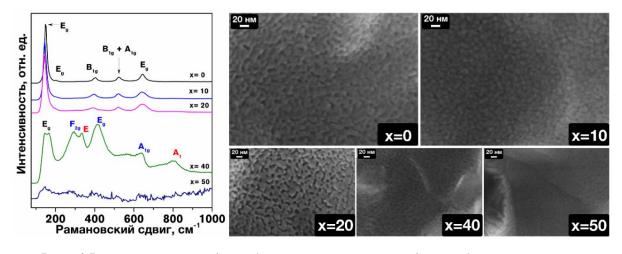


Рис. 6 Раман-спектры (слева) и микроструктура (справа) тонких плёнок TiO_2 -х ZrO_2 (где x=0-50 мол.%)

Плёнки составов TiO_2 —х ZrO_2 (где x = 0, 10 мол.%) показали высокий отклик на O_2 (1–20%) вследствие протекании реакции (2) при температуре 400°С. Для индивидуального TiO_2 при увеличении концентрации кислорода от 1 до 20% наблюдается увеличение величины отклика (R_{O2}/R_{Ar}) от 4.4 до 8.2, а при допировании 10% ZrO_2 наблюдается существенное увеличение величины отклика (R_{O2}/R_{Ar}) от 5.0 до 11.5, соответственно. При введении в структуру диоксида титана 10 мол.% ZrO_2 происходит уменьшение среднего размера частиц с 13 ± 2 до 9 ± 1 нм (СЭМ) с сохранением фазы анатаза, что способствует увеличению отклика на O_2 и снижению температуры детектирования до 350°С. Пленки указанных составов обладают прекрасной воспроизводимостью сигнала (рис. 7) и хорошей селективностью по сравнению с другими газами-аналитами (H_2 , CO, CH_4), отклик к которым не превышает 1.6 и 1.4 при рабочих температурах 400 и 450°С, соответственно.

В работе впервые показано, что толстая плёнка высокодисперсного шриланкита ZrTiO₄, полученного золь-гель методом при температуре 700°C, демонстрирует хеморезистивный отклик на кислород 1–20% (рис. 8) и водород 200–10000 ррт, равный 1.8–3.5 и 1.5–5.5, соответственно. Дополнительно для изучения влияния влажности на получаемый сигнал при детектировании кислорода изучена чувствительность на O_2 при 100% влажности (рис. 8). Установлено, что влажность отрицательно сказалась на величину отклика R_{O2}/R_{Ar} , который уменьшился в 1.4 раза для 1% O_2 (до 1.3) и в 2 раза для 20% O_2 (до 1.7).

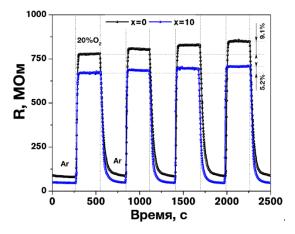


Рис. 7 Воспроизводимость сигнала при детектировании $20\% O_2$ для тонких плёнок TiO_2 — $xZrO_2$ (x = 0 и 10 мол.%), $T=400^{\circ}C$

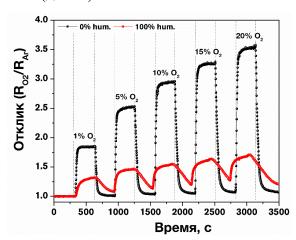


Рис. 8. Резистивный отклик толстой пленки ZrTiO₄ при T=450 °C на 1-20% O₂ при 0 и 100% влажности

В разделе 3.4 описывается получение 2x- и 3x-слойной плёнки 90% $TiO_2-10\%$ ZrO_2 методом печати высокого разрешения с использованием в качестве

функциональных чернил раствора алкоксоацетилацетонатов циркония-титана. Тонкая плёнка имеет структуру фазы анатаза (Раман-спектроскопии) со средним размером частиц 11±2 нм (СЭМ, рис. 9).

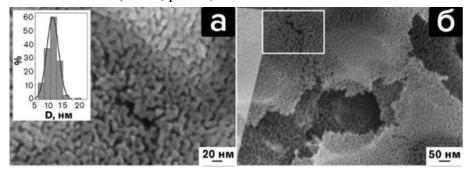


Рис. 9.
Микрофотографии (СЭМ) тонкой плёнки ТіО₂—хZrO₂ (х=10 мол.%), полученной методом іпк-jet печати

Для двухслойного покрытия при увеличении содержания O_2 в газовой смеси с 1 до 20% отклик R_{O2}/R_{Ar} увеличился с 1.9 до 3.0 (400°C) и с 1.5 до 2.1 (450°C), для трехслойного покрытия – с 1.5 до 2.8 (400°C) и с 1.7 до 2.7 (450°C), соответственно. Для трехслойного покрытия удалось добиться снижения рабочей температуры до 350°C. Зависимость отклика является линейно от логарифма концентрации O_2 , что характерно для дефектных полупроводниковых материалов, таких как TiO_2 или CeO_2 [3].

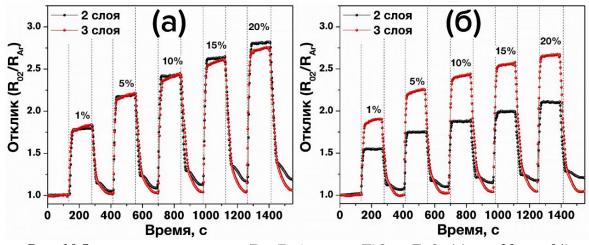


Рис. 10 Зависимость отклика (R_{O2}/R_{Ar}) плёнки TiO_2-xZrO_2 (где x=10 мол.%), полученной методом ink-jet nevamu: при 400 (a) и 450°C (б) от концентрации O_2

При рабочей температуре 400° С отклик для двух- и трехслойных оксидных покрытий практически одинаков (рис. 10). Но при 450° С отклик у трехслойного покрытия значительно выше, чем у двухслойного, что может быть связано с большей сплошностью покрытия и усилением диффузионных процессов при большей температуре. Плёнки прекрасно воспроизводят получаемый сигнал, обладают хорошей селективностью, отклики на H_2 , CH_4 и CO при $T=450^{\circ}$ С получились ниже, чем на 1% O_2 и не превышают 1.3 (при 400° С) и 1.4 (при 450° С).

Раздел 3.5 посвящен получению методом молекулярного наслаивания и исследованию тонкой плёнки TiO_2 . При этом для активации поверхности Al_2O_3 перед нанесением слоев TiO_2 подложка вакуумировалась при температуре 200° С и далее подвергалась обработкой парами воды. Синтез тонкой плёнки заданной толщины осуществляли путем многократной и попеременной обработки подложки парами тетрахлорида титана $TiCl_4$ и дистиллированной воды при остаточном давлении около 10^3 Па и температуре 220° С. После осуществления 450 циклов толщина покрытия составляла ~ 30 нм. После нанесения покрытия образцы дополнительно подвергались термической обработке при температуре 350° С (1 ч). Установлено, что полученная плёнка TiO_2 имеет кристаллическую структуру анатаза (Раман-спектроскопия) со средним размером частиц 34.9 ± 3.1 нм (СЭМ).

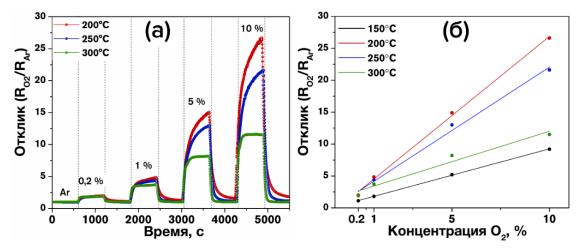


Рис. 11. Чувствительность к 0.2-10% O_2 тонкой плёнки TiO_2 , полученной методом молекулярного наслаивания: экспериментальные данные при T=200-300°C (а) и зависимость отклика от содержания кислорода при T=150-300°C (б)

Плёнка показала высокий воспроизводимый отклик на кислород в диапазоне концентраций 0.2-10% при низких рабочих температурах 150-300°C (рис. 11). При 150°C рабочей температуре кинетические характеристики являются неудовлетворительными: временам отклика и восстановления (t₀₋₉₀) >10 мин (за исключение концентрации O_2 0.2%, в данном случае $t_{0-90} = 139$ с), однако отмечены высокие величины отклика 1.2-9.5 (для 0.2 до 10% O_2). При увеличении рабочей температуры до 200, 250 и 300°C наблюдается улучшение кинетики поверхностных процессов и стабилизация формы получаемого сигнала (рис. 10): время отклика и снижается, а форма сигнала становится более восстановления близкой прямоугольной. Наибольший отклик на кислород наблюдается при $T=200^{\circ}C$ (R_{O2}/R_{Ar} составляет 2.0–26.6 для 0.2-10% О2, соответственно), наилучшая кинетика процесса –

при T=300°C, где время отклика и время восстановления при содержании кислорода от 0.2 до 10% увеличиваются с 42 до 185 с и с 70 до 186 с, соответственно.

На рис. 116 видно, что зависимость отклика от концентрации O₂ при температурах детектирования 150–300°С является линейной, в отличии от рецепторных материалов, полученными золь-гель методом. Это связано с тем, что в данном случае плёнка TiO₂ позволяет детектировать кислород при гораздо меньших температурах (150–300°С), в отличии от плёнок, полученных золь-гель методом (>350°С). Логарифмическая зависимость величины отклика от парциального давления О₂ типична для полупроводниковых материалов при повышенных температурах, при которых сильнее проявляется влияние различных носителей заряда (электронов и дырок).

Показано, что влажность не влияет на величину отклика, но сильно влияет на кинетические процессы. Так, при рабочей температуре 300°C время отклика и время восстановления при детектировании 1% О₂ в среде 100% влажности увеличилось в 4.6 и 4.2 раза, соответственно.

В разделе 3.6 представлен сравнительный анализ хеморезистивной чувствительности на кислород оксидных тонких плёнок составов ZrO₂-xY₂O₃, CeO₂-xZrO₂, TiO₂-xZrO₂, полученных с применением сочетания методов золь-гель технологии и dip-coating, пленки состава TiO₂-10 мол. % ZrO₂, полученной с применением методов золь-гель технологии и ink-jet печати, плёнки состава TiO_2 , нанесенной с применением метода молекулярного наслаивания, а также некоторых других аналогов, представленных в литературе и обладающими наилучшими характеристиками. В результате выполненного анализа можно сделать вывод, что тонкопленочные наноматериалы, которые стали объектами исследования в данной работе, показали хорошие сенсорные характеристики при детектировании кислорода, сравнимые или превышающие свойства аналогов, описанных в литературе. Каждый из описанных объектов обладает своими преимуществами и может быть использован для селективного качественного и количественного детектирования кислорода в хеморезистивных энергоэффективных датчиках. Так, для очень чувствительной к О2 пленки TiO₂, полученной методом молекулярного наслаивания, можно отметить чрезвычайно низкие температуры детектирования (что важно для повышения энергоэффективности датчиков), однако для них характерны длительные времена отклика и восстановления (>170 c). Для тонких пленок сложных оксидов, полученных золь-гель методом (dip-coating и ink-jet печать), при достаточно высоких и стабильных откликах на кислород наблюдались кинетические характеристики, более подходящие для применения в реальных сенсорах (~6-40 c).

выводы

- 1. Разработаны методы синтеза тонкоплёночных наноматериалов в системах $ZrO_2-Y_2O_3$, CeO_2-ZrO_2 и TiO_2-ZrO_2 как перспективных рецепторных компонентов хеморезистивных газовых сенсоров для детектирования кислорода при пониженных рабочих температурах (350–450°C); показана эффективность применения в качестве прекурсоров гетеролигандных комплексов состава $[M(O_2C_5H_7)_x(^iOC_5H_{11})_y]$ (где $M=Zr^{4+}$ и Y^{3+} ; Ce^{3+} и Zr^{4+} ; Ti^{4+} и Zr^{4+}).
- 2. Изучен фазовый состав порошков и тонких пленок состава $ZrO_2-xY_2O_3$ (где x- мол.%), полученных золь-гель методом при температуре $750^{\circ}C$ (1 ч). Показано, что в зависимости от содержания оксида иттрия наряду с изменением фазового состава $(m(x=0) \to t'(x=5) \to t''(x=10) \to c(x=15) \to r(x=33))$ происходит уменьшение среднего размера частиц (СЭМ) в пленках с 38 ± 4 (x=0) до 13 ± 1 нм (x=50). Впервые продемонстрирована перспективность применения тонкопленочных оксидных наноструктур $ZrO_2-xY_2O_3$ в качестве рецепторных материалов в хеморезистивных газовых сенсоров при рабочих температурах $350-450^{\circ}C$ на O_2 и O_2 и O_2 и O_3 и O_4 и O_5 и O_5 и O_6 и O_7 и O_8 и O_8 и O_9 и O_9
- 3. Установлено, что полученные при температуре 500°С тонкие наноструктурированные плёнки CeO_2 – $xZrO_2$ ($x=0\div30$ мол.%) позволяют регистрировать высокий воспроизводимый резистивный отклик на кислород в широком диапазоне концентраций 0.4–20% при относительно низкой рабочей температуре (400°С). При введении в структуру CeO_2 ионов Zr^{4+} в указанных условиях происходит образование твердого раствора со структурой флюорита с повышенным содержанием дополнительных кислородных вакансий и меньшим размером частиц, что способствует увеличению отклика на кислород. Наибольший отклик на кислород наблюдался для наноматериала состава CeO_2 – $xZrO_2$ (x=10 мол.%), а наилучшая селективность на O_2 по сравнению с другими аналитами (H_2 , CO, CH_4 , NO_2) свойственна для состава CeO_2 – $xZrO_2$ (x=20 мол.%).

- 4. Показано, что наноструктурированные плёнки составов TiO_2 –х ZrO_2 (x = 0 и 10 мол.%), имеющие структуру анатаза (температура кристаллизации 500°C), обладают высоким воспроизводимым и селективным откликом на кислород (1–20%) при относительно низких рабочих температурах (400, 450°C). Установлено, что при введении в структуру диоксида титана 10 мол.% ZrO_2 происходит уменьшение среднего размера частиц с 13 ± 2 до 9 ± 1 нм с сохранением фазы анатаза, что способствует увеличению отклика на кислород во всем концентрационном интервале и снижению температуры детектирования до 350°C. Выявлены зависимости величины отклика R_{O2}/R_{Ar} от содержания O_2 , рабочей температуры и состава рецепторного материала.
- 5. Установлена принципиальная возможность получения высокого и воспроизводимого хеморезистивного отклика на водород ($200\div10000$ ppm; $R_0/R = 1.5\div5.5$) и кислород ($1\div20\%$; $R_{O2}/R_{Ar} = 1.8\div3.5$) при температуре детектирования 450° С для нанесенной методом трафаретной печати плёнки нанокристаллического порошка ZrTiO₄, полученного золь-гель методом при температуре 700° С.
- 6. Показана перспективность применения растворов алкоксоацетилацетонатов металлов в качестве функциональных чернил для ink-jet печати высокого разрешения тонких наноструктурированных газочувствительных пленок состава TiO_2 –10мол.% ZrO_2 (в том числе многослойных), позволяющих получать хеморезистивный отклик на O_2 (от 0.2%) при температурах 350–450°C.
- 7. Впервые комплексно исследована чувствительность к кислороду тонкой плёнки TiO_2 , полученной методом молекулярного наслаивания. Выявлено, что она позволяет детектировать кислород (0.2–10%) при низких рабочих температурах (150–300°C) с высоким откликом: R_{O2}/R_{Ar} на 10% O_2 при рабочей температуре 200°C достигает 26.6.

Основные публикации по теме диссертации

Публикации в ведущих периодических изданиях, рекомендованных ВАК при ${\it Muhofphayku}\ P\Phi$:

1. Simonenko E.P. A sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO₄ / E.P. Simonenko, N.P. Simonenko, G.P. Kopitsa, **A.S. Mokrushin**, T. V. Khamova, S.V. Sizova, M. Khaddazh, N.V. Tsvigun, V. Pipich, Y.E. Gorshkova, V.G. Sevastyanov, N.T. Kuznetsov // Mater. Chem. Phys. – 2019. – V. 225 – P. 347–357, DOI: 10.1016/j.matchemphys.2018.12.102.

- 2. Simonenko E.P. Ink-jet printing of a TiO₂–10%ZrO₂ thin film for oxygen detection using a solution of metal alkoxoacetylacetonates / E.P. Simonenko, **A.S. Mokrushin**, N.P. Simonenko, V.A. Voronov, V.P. Kim, S.V. Tkachev, S.P. Gubin, V.G. Sevastyanov, N.T. Kuznetsov // Thin Solid Films 2019. V. 670. P. 46–53, DOI: 10.1016/j.tsf.2018.12.004.
- 3. **Mokrushin A.S.** Microstructure, phase composition, and gas-sensing properties of nanostructured ZrO_2 – xY_2O_3 thin films and powders obtained by the sol-gel method / A.S. Mokrushin, E.P. Simonenko, N.P. Simonenko, K.A. Bukunov, V.G. Sevastyanov, N.T. Kuznetsov // Ionics 2019. V. 25. No. 3. P. 1259–1270, DOI: 10.1007/s11581-018-2820-z.
- 4. **Mokrushin A. S.** Oxygen Detection Using Nanostructured TiO₂ Thin Films Obtained by the Molecular Layering Method / A.S. Mokrushin, E.P. Simonenko, N. P. Simonenko, K.T. Akkuleva, V.V. Antipov, N.V. Zaharova, A. A. Malygin, K.A. Bukunov, V.G. Sevastyanov, N.T. Kuznetsov // Appl. Surf. Sci. 2019. V. 463. P. 197–202, DOI: 10.1016/j.apsusc.2018.08.208.
- 5. **Mokrushin A. S.** Gas-sensing properties of nanostructured CeO₂−xZrO₂ thin films obtained by the sol-gel method / A.S. Mokrushin, E.P. Simonenko, N.P. Simonenko, K.A. Bukunov, V.G. Sevastyanov, N.T. Kuznetsov // J. Alloy. Compd. − 2019. − V. 773. − № 2. − P. 197–202, DOI: 10.1016/j.jallcom.2018.09.274.
- 6. Sevastyanov V.G. Sol-gel made titanium dioxide nanostructured thin films as gassensing material for oxygen detection / V.G. Sevastyanov, E. P. Simonenko, N.P. Simonenko, A.S. Mokrushin, V.A. Nikolaev, N.T. Kuznetsov // Mendeleev Commun. − 2018. − V. 28. − № 2. − P. 164−166, DOI: 10.1016/j.mencom.2018.03.018.
- 7. Simonenko N.P. Thin Films of the Composition 8% Y_2O_3 –92% ZrO_2 (8YSZ) as Gas-Sensing Materials for Oxygen Detection / N.P. Simonenko, E.P. Simonenko, **A.S. Mokrushin**, V.S. Popov, A.A. Vasiliev, V.G. Sevastyanov, N.T. Kuznetsov // Russ. J. Inorg. Chem. 2017. V. 62. N_2 6. P. 695–701, DOI: 10.1134/S0036023617060213.

Тезисы докладов:

1. **Мокрушин А.С.** Тонкие наноструктурированные плёнки составов ZrO₂ – (TiO₂, CeO₂, Y₂O₃), полученные золь-гель методом, перспективные для детектирования кислорода / А.С. Мокрушин, Е.П. Симоненко, Н.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов пятой Международной конференции стран СНГ «Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов и дисперсных систем «Золь-гель 2018», 27–31.08.2018, Санкт-Петербург

- -2018. -C. 93-94.
- 2. Симоненко Н.П. Печатные технологии в золь-гель синтезе тонкоплёночных функциональных наноматериалов / Н.П. Симоненко, Е.П. Симоненко, А.С. Мокрушин, В.П. Ким, С.В. Ткачев, С.П. Губин, И.С. Власов, И.А. Волков, Т. Маеder, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов пятой Международной Конференции Стран СНГ «Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов и дисперсных систем «Золь-гель 2018», 27–31.08.2018, Санкт-Петербург 2018. С. 40–41.
- 3. Симоненко Н.П. Применение координационных соединений металлов при создании тонкоплёночных оксидных наноструктур с помощью печатных технологий / Н.П. Симоненко, А.С. Мокрушин, Ф.Ю Горобцов, И.А. Нагорнов, В.М. Иванова. И.С. Власов, Е.П. Симоненко, И.А. Волков, Т. Маеder, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов VIII Конференция Молодых Ученых по общей и неорганической химии», 10-13.04.2018, Москва 2018. С. 76–77.
- 4. **Мокрушин А.С.** Исследование газочувствительных свойств тонких наноструктурированных плёнок состава $xZrO_2$ — $(1-x)CeO_2$ / А.С. Мокрушин, Е.П. Симоненко, Н.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов VIII Конференция Молодых Ученых по общей и неорганической химии», 10—13.04.2018, Москва 2018. С. 61—62.
- 5. **Мокрушин А.С.** Изучение электрофизических свойств тонких плёнок состава $xZrO_2$ — $(1-x)CeO_2$ / А.С. Мокрушин, Е.П. Симоненко, Н.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов Международной конференции со школой и мастер-классами для молодых Ученых «Химическая технология функциональных наноматериалов», 30.11—1.12.2017, Москва—2017.— С. 177—178.
- 6. **Мокрушин А.С.** Золь-гель синтез высокодисперсных оксидов состава х%ТіO₂—ZrO₂ в виде порошков и тонких плёнок / А.С. Мокрушин, Н.П. Симоненко, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов XI Всероссийской школы-конференции молодых ученых «Теоретическая и экспериментальная химия жидкофазных систем (Крестовские чтения), 30.10—4.11.2017, Иваново –2017. —С. 44—145.
- 7. Симоненко Н.П. Алкоксоацетилацетонаты металлов как перспективные компоненты функциональных чернил для печатной электроники / Н.П. Симоненко, Д.А. Дивицкая, И.С. Власов, **А.С. Мокрушин**, И.А. Волков, Е.П. Симоненко, А.А. Васильев,

- Т. Maeder, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов XI Всероссийской школыконференции молодых ученых «Теоретическая и экспериментальная химия жидкофазных систем (Крестовские чтения), 30.10–4.11.2017, Иваново 2017. С. 112.
- 8. **Мокрушин А.С.** Тонкие наноструктурированные плёнки состава 90 мол.% ТіО₂-10 мол.% ZrO₂, полученные с использованием ink-jet печати, детектирующие кислород / А.С. Мокрушин, Е.П. Симоненко, Н.П. Симоненко, В.А. Воронов, В.П. Ким, С.В. Ткачев, С.П. Губин, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов XI конкурса проектов молодых ученых, 24.10.2017, Москва 2017. С. 159–160.
- 9. **Mokrushin A.S.** Zirconium, yttrium and cerium alkoxoacetylacetonates coordination compounds for sol-gel obtaining of thin nanostructured complex oxide systems for oxygen detecting / A.S. Mokrushin, E.P. Simonenko, N.P. Simonenko, V.G. Sevastyanov, N.T. Kusnetzov // Сборник тезисов XXVII Международной Чугаевской конференции по координационной химии, 2–6.10.2017, Нижний Новгород 2017. С. 226.
- 10. Аккулева К.Т. Газовый сенсор для детектирования кислорода на основе TiO_x структур, полученных методом молекулярного наслаивания / К.Т. Аккулева, В.В. Антипов, Н.В. Захарова, А.А. Малыгин, **А.С. Мокрушин**, Н.П. Симоненко, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов второго Всероссийского Конгресса по сенсорному приборостроению «Сенсорное слияние», 30–31.05.2017, Санкт-Петербург, Кронштадт 2017. С. 33–34.
- 11. **Мокрушин А.С.** Влияние микроструктуры и толщины тонких плёнок диоксида титана, полученных с помощью золь-гель технологии, на их хемосенсорные свойства / А.С. Мокрушин, В.А. Николаев, Е.П. Симоненко, Н.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов VII Конференция молодых ученых по общей и неорганической химии, 11–14.04.2017, Москва 2017. С. 141–142.
- 12. Симоненко Н.П. Применение гетеролигандных прекурсоров при создании тонкоплёночных газочувствительных наноструктур с помощью струйной печати высокого разрешения / Н.П. Симоненко, **А.С. Мокрушин**, В.А. Воронов, В.П. Ким, С.В. Ткачев, Е.П. Симоненко, А.А. Васильев, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов VII Конференция молодых ученых по общей и неорганической химии, 11–14.04.2017, Москва 2017. С. 182–183.
- 13. Симоненко Е.П. Исследование способности к детектированию кислорода тонких наноструктурированных пленок $ZrO_2-Y_2O_3$ / Е.П. Симоненко, **А.С. Мокрушин**, Н.П.

- Симоненко, В.С. Попов, А.А. Васильев, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов XX Менделеевского съезда по общей и прикладной химии, 26–30.09.16, Екатеринбург 2016. С. 92.
- 14. **Мокрушин А.С.** IN-SITU контроль процесса кристаллизации TiO₂ путём измерения сопротивления при ступенчатом нагревании тонких плёнок титансодержащего ксерогеля / А.С. Мокрушин, Е.П. Симоненко, Н.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов IX Международной научная конференции «Кинетика и механизм кристаллизации. Кристаллизация и материалы будущего», 13–16.09.2016, Иваново 2016. С. 145–146.
- 15. Симоненко Е.П. Влияние состава тонкопленочных наноструктурированных материалов состава ZrO₂—TiO₂ на их газочувствительные свойства при детектировании кислорода / Е.П. Симоненко, **А.С. Мокрушин**, Н.П. Симоненко, В.С. Попов, А.А. Васильев, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов XI Международного Курнаковского совещания по физико-химическому анализу, 27.06—01.07.16, Воронеж —2016. —С. 207—208.
- 16. **Мокрушин А.С.** Зависимость сенсорных свойств 2D-наноматериалов TiO₂–ZrO₂ от состава и условий кристаллизации / А.С. Мокрушин, В.С. Попов, Е.П. Симоненко, Н.П. Симоненко, А.А. Васильев, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов VI Конференции молодых ученых по общей и неорганической химии, 12–15.04.2016, Москва 2016. С. 153–154.
- 17. **Мокрушин А.С.** Влияние условий кристаллизации на сенсорные свойства тонких наноструктурированных плёнок диоксида циркония, содержащего 8 мольных % оксида иттрия (8YSZ) / А.С. Мокрушин, Н.П. Симоненко, В.С. Попов, Е.П. Симоненко А.А. Васильев, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов Всероссийской Молодежной Конференции с международным участием «Химическая технология функциональных наноматериалов, 26–27.11.2015, Москва 2015. С. 143–145.
- 18. **Мокрушин А.С.** Изучение сенсорных свойств тонких пленок оксида циркония, стабилизированного иттрием / А.С. Мокрушин, В.С. Попов, Е.П. Симоненко, Н.П. Симоненко, А.А. Васильев, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник тезисов V Конференции молодых ученых по общей и неорганической химии, 14–17.04.2015, Москва 2015. С. 142–143.

БЛАГОДАРНОСТИ

Автор выражает глубокую признательность. д.х.н. Симоненко Е.П. и чл.--корр. РАН, д.х.н. Севастьянову В.Г за мудрое руководство работой, наставничество и поддержку на всех этапах исследований; к.х.н. Симоненко Н.П. за всестороннюю помощь в получении и интерпретации результатов физико-химических методов анализа; Буккунову К.А. (МГУ) за запись и помощь в интерпретации Раманспектров; д.х.н. Малыгину А.А. и сотрудникам кафедры Химической нанотехнологии и материалов электронной техники СПбГТИ(ТУ) за совместную работу по изучению газочувствительных свойств тонкой плёнки ТіО2, полученной методом молекулярного наслаивания; коллективу ООО «АкКо Лаб» за возможность апробации в качестве чернил полученных в рамках диссертационной работы прекурсоров и дальнейшей печати газочувствительной тонкой плёнки; к.х.н. В.С. Попову, д.т.н. Васильеву А.А. (НИЦ «Курчатовский институт»), к.ф.-м.н. Волкову И.А. и Власову И.С. (МФТИ), к.т.н. Федорову Ф.С. (Сколтех), а также всем коллегам по лаборатории за поддержку.