На правах рукописи

1/

Кочнева Ирина Константиновна

Координационные соединения Си и Ад с анионом [B₁₂H₁₂]²⁻ и

азагетероциклическими лигандами L (L = bipy, phen, bpa); синтез, строение, свойства

02.00.01 – неорганическая химия

Автореферат

диссертации на соискание ученой степени

кандидата химических наук

Москва 2018

Работа выполнена в лаборатории химии легких элементов и кластеров ФГБУН Института общей и неорганической химии им. Н. С. Курнакова РАН

Научный	Малинина Елена Анатольевна, доктор химических наук,								
руководитель:	доцент, ведущий научный сотрудник ФГБУН Института общей и								
	неорганической химии им. Н.С. Курнакова РАН,								
Официальные	Сиваев Игорь Борисович, доктор химических наук, ведущий								
оппоненты:	научный сотрудник лаборатории алюминий- и борорганических								
	соединений ФГБУН Института элементоорганических								
	соединений им. А.Н. Несмеянова РАН,								
	Булычев Борис Михайлович, доктор химических наук, профессор,								
	заведующий лабораторией химии высоких давлений, кафедры								
	химической технологии и новых материалов								
	ФГБО УВО «Московский государственный университет им. М. В.								
	Ломоносова»								
Ведущая	ФГБО УВО «МИРЭА — Российский технологический								
организация:	университет», Институт тонких химических технологий им. М.В.								
	Ломоносова								

Защита состоится «28» ноября 2018 года в <u>11.00</u> на заседании Диссертационного совета Д 002.021.01 при Федеральном государственном бюджетном учреждении науки Институте общей и неорганической химии им. Н.С. Курнакова РАН по адресу 119991, г. Москва, Ленинский проспект, д.31.

С диссертацией можно ознакомиться в библиотеке ИОНХ РАН и на сайте <u>www.igic.ras.ru</u>

Автореферат разослан « » 2018 г.

Ученый секретарь

диссертационного совета Д 002.021.01,

кандидат химических наук

Tur

А.Ю.Быков

Общая характеристика работы

Актуальность работы. Кластерные анионы бора $[B_nH_n]^{2-}$ (n = 6-12) представляют обширный класс полиэдрических соединений, остов которых состоит целиком из атомов бора и наряду с фуллеренами, являются одними из немногих примеров полностью неметаллических кластеров. Химия анионов $[B_nH_n]^{2-}$ непроста и разнообразна, и составляет самостоятельный раздел химии бора.

Факт существования этих систем и их химическое поведение во многом определяется наличием делокализованной электронной плотности и пространственно-ароматическим характером химической связи, что существенно отличает их и их свойства от большинства гидридных соединений бора. Высокая термическая и кинетическая стабильность борных систем, ярко выраженная тенденция к реакциям замещения позволили вплотную подойти к решению ряда прикладных задач, в первую очередь для использования этих соединений в целях ВНЗТ опухолей¹. Особенности строения анионов-лигандов [B_nH_n]², существенно расширяют круг проблем, обсуждаемых в классической координационной химии, и заслуживают особого внимания исследователей, поскольку открывают широкие возможности для фундаментальных исследований, проводимых на стыке химии координационных соединений и специфической химии кластерных анионов бора. Среди таких проблем можно выделить: получение и исследование строения и свойств комплексных соединений с различными типами связей металл-кластер бора; изучение вторичных взаимодействий, обусловленных природой кластерных анионов бора [B_nH_n]²⁻, их влияния на формирование координационной сферы и элементарной ячейки комплексов; рассмотрение изомерии образующихся комплексов.

На процесс комплексообразования, строение образующихся комплексов и характер связывания металл-полиэдр (М-[B_nH_n]²⁻) существенно влияет как природа металлакомплексообразователя, так и природа кластерных анионов бора. Рассматриваемые лиганды представляют собой объемные многогранники, и во взаимодействие с металлом могут быть вовлечены вершины, ребра или грани борного полиэдра отдельно или в комбинациях, поэтому *клозо*-бороводородные анионы представляют собой самостоятельный класс полидентатных лигандов в координационной химии.

Основные области практического применения кластерных соединений бора остаются неизменными, начиная с 1960-х годов, и в основном основываются на их свойствах. Это направления, связанные с высокой энергоемкостью гидридных соединений бора: их

¹ King, R. B. Three-Dimensional Aromaticity in Polyhedral Boranes and Related Molecules / R. B. King // Chem. Rev. -2001. - vol. 101 - p. 1119.

используют в качестве добавок высококалорийных авиационных и ракетных топлив^{2,3} в качестве инициаторов горения⁴. пиротехнике BO взрывном деле В Высокая И нейтронопоглощающая способность соединений бора (сечение захвата нейтронов изотопа бора-10 составляет 3600 барн) востребована для создания прочных термостойких полимерных нейтронозащитных покрытий с хорошей адгезией к различным материалам^{5,6}, а также нейтронозащитных тканей⁷. Специфические свойства перхлорированного производного клозо-декаборатного аниона нашли свое применение в качестве добавок в электролиты для электрохимических источников тока⁸. Было предложено использовать некоторые соединения для получения карбида бора, боридов титана, ниобия, молибдена, вольфрама, кобальта, магния, бериллия⁹, в качестве секвеструющих агентов для тяжелых металлов¹⁰.

Комплексные соединения на основе кластерных анионов бора также имеют широкое применение в различных областях науки и техники¹¹. В настоящее время активно развиваются направления, связанные с синтезом комплексных соединений, обладающих различными физико-химическими свойствами, в том числе магнитными, основываясь на которых возможно использование подобных комплексов для создания квантовых ячеек, способных выступать в качестве элементов запоминающих устройств. При взаимодействии с электромагнитным полем такие комплексные единицы способны изменять свойства поля, что может быть использовано в лазерной технике, медицине, оптике и смежных областях науки и техники.

В настоящее время координационная химия в основном развита для аниона [B₁₀H₁₀]²⁻; синтезировано и охарактеризован ряд внутрисферных координационных соединений металлов мягких-кислот в том числе с конкурентоспособными лигандами. Изучены реакции комплексообразования с металлами, имеющими несколько устойчивых степеней окисления, сопровождающиеся окислительно-восстановительными процессами (OBP).

Додекагидро-*клозо*-додекаборатный анион $[B_{12}H_{12}]^{2-}$ является высшим представителем в ряду анионов $[B_nH_n]^{2-}$ (n = 6-12), обладает наименьшей реакционноспособностью и менее выраженными восстановительными свойствами. Геометрия кластерного аниона представляет

4

² Schubert, D. Borax Pioneer / D. Schubert // 2001. -vol. 20 -p. 8, 2001.

³ Clark, J. D. Ignition! An Informal History of Liquid Rocet Propellants / J. D. Clark // Rutgers University Press: New Brunswick. - 1972. - p. 120.

⁴ Mader, C. L. Research: Report of Los Alamos Scientific Laboratory LA-2343 (http://lib-www.lang.gov/cgi-bin/getfile?00419929.pdf) / C. L. Mader and L. C.

Smith // 1959.

⁵ **Peneroux, J.** Preparation de L'ion enrichi en bore 10 en vue de son utilization en solution aquese comme absorbuere de netrons dans un reacteur nucleaire eue lourde (Commisariat a l'elergie atomique rapport CEA-R-446) / J. Peneroux // Cif-Suz-Yvette (France), 1973.

⁶ Heying, T. L. Polymers containing clusters of boron atoms / T. L. Heying // Progress in boron chemistry. – 1970. – vol. 2 – p. 119.

⁷ Knoth, W. H. Polyamides and Polyesters of Polyhedral Boron Compounds. Patent US 3354121.

⁸ Johnson, J. W. Lithium closo-borane electrolytes. Preparation and characterization / J. W. Johnson and J. P. Brodly // J. Electrochem. Soc. – 1982. – vol. 129 – p. 2213.

⁹ Hanslik, T. Borides of Transition Metals. Patent CZ 153828.

¹⁰ Parshall, G. W. Hydroqen generation by hydrolysis or alkoholysis of a polyhydropolyborate. - Group VIII metal mixture. Patent US 3166514.

¹¹ Сиваев, И. Б. Соли азотсодержащих гетероциклических соединений с полиэдрическими борановыми анионами: от ионных жидкостей до высокоэнергетических материалов / И. Б. Сиваев // Хим. Гетероцикл. Соед. – 2017. – т. 53 – № 6/9 – р. 638.

собой икосаэдр, в котором КЧ всех атомов бора равно 6. Следует отметить, что именно этот факт и привел к тому, что координационную способность аниона $[B_{12}H_{12}]^{2-}$ исследователи долгое время относили к «нулевой», тем самым не рассматривая его, в качестве потенциального лиганда. Совокупность вышеперечисленных факторов вносит определенные коррективы в процесс исследования реакций комплексообразования с участием аниона $[B_{12}H_{12}]^{2-}$.

Варьирование природы металла, лигандов, условий проведения реакций позволяет определять процессы, сопровождающие реакции комплексообразования и вносящие существенные коррективы в ход основных процессов. Анализ особенностей строения синтезированных соединений позволяет сделать основополагающие выводы о влиянии различных факторов на протекание процессов комплексообразования в системах металлкластерный анион бора. Полученные данные могут рассматриваться как вклад в развитие координационной химии переходных металлов, а также важны с позиций расширения путей использования комплексных соединений с кластерными анионами бора при создании новых промышленно важных материалов, разработке магнитных материалов, создании супрамолекулярных структур и т.д.

Целью исследования является изучение процессов комплексообразования с участием аниона $[B_{12}H_{12}]^{2-}$ в зависимости от природы металла-комплексообразователя и природы конкурирующих лигандов. Изучены реакции комплексообразования металлов-мягких кислот по Пирсону (Cu(I) и Ag(I)) в присутствии N-донорных лигандов L и кластерного аниона бора $[B_{12}H_{12}]^{2-}$ с учетом процессов, сопровождающих реакции комплексообразования; исследованы влияние условий реакций на состав и строение образующихся комплексов.

Задачами настоящего исследования являются:

Разработка методик синтеза и синтез комплексов меди и серебра(I) с анионом [B₁₂H₁₂]²⁻ и азагетероциклическими лигандами L;

Изучение процессов, сопровождающих реакции комплексообразования: OBP с участием солей металлов и кластера бора, реакции без OBP;

Определение состава и строения образующихся комплексов, условий и закономерностей их образования;

Исследование особенностей строения и установление закономерности в ряду состав – структура – свойства для ряда новых комплексных соединений Cu(II) с анионом [B₁₂H₁₂]²⁻ и лигандами L.

Научная новизна исследования

Получены фундаментальные данные о процессах комплексообразования металлов Cu(I)/Cu(II), Ag(I) с кластерным анионом бора [B₁₂H₁₂]²⁻ в присутствии азагетероциклических

5

лигандов L. Определено влияние металла, кластерного аниона бора, лиганда и растворителя на ход процессов комплексообразования, состав и строение продуктов реакций.

Впервые систематически исследованы процессы, сопровождающие реакции комплексообразования с участием кластерного аниона бора, определено влияние реагентов и условий реакций на ход процессов, состав и строение образующихся продуктов. Изучены процессы комплексообразования в условиях ОВР и без в системах Cu^I/L/[B₁₂H₁₂]²⁻, Cu^I(Ag^I)/[B₁₂H₁₂]²⁻/L, Cu^{II} /L/[B₁₂H₁₂]²⁻, Ag^I/L/[B₁₂H₁₂]²⁻.

Разработаны методы синтеза биядерных и полимерных комплексов Ag(I) с анионом $[B_{12}H_{12}]^{2-}$ и азагетероциклическими лигандами L (L = 2,2`-бипиридил (*bipy*), 2,2`- бипиридиламин (*bpa*), 1,10-фенантролин (*phen*)). Впервые получены примеры биядерных комплексов Ag(I) анионом $[B_{12}H_{12}]^{2-}$ с азагетероциклическими лигандами L (L = *bipy*, *bpa*, *phen*) и трифенилфосфином (Ph₃P). Получен тетраядерный комплекс Ag(I) с анионом $[B_{12}H_{12}]^{2-}$ и азагетероциклическим лигандом *bipy*, в котором наблюдается связь Ag–Ag.

Разработаны методы синтеза моно-, би-, три- и тетраядерных комплексов Cu(I), Cu(II) и смешаннокатионного соединения Cu(I,II) с анионом $[B_{12}H_{12}]^{2-}$ и азагетероциклическими лигандами L (L = *bipy*, *bpa*, *phen*).

Обобщены особенности строения синтезированных соединений. Для ряда соединений меди изучены магнитные свойства и получены данные магнитной восприимчивости.

Практическая значимость результатов исследования

В ходе выполнения исследования разработаны способы получения комплексных соединений металлов-мягких кислот Cu, Ag с анионом $[B_{12}H_{12}]^{2-}$ и азагетероциклическими лигандами L (L= *bipy*, *phen*, *bpa*). Полученные в работе комплексные соединения Cu(II) могут быть использованы в качестве моделей молекулярных магнетиков для изучения обменных процессов между атомами металлов; координационные полимеры серебра на основе аниона $[B_{12}H_{12}]^{2-}$ за счет его размера и многообразия вариантов координации борного кластера образуют элементарные кристаллические ячейки различного строения, в которых формируются полости разного размера, позволяющие потенциально сорбировать малые молекулы и атомы.

Положения, выносимые на защиту

1. Реакционная способность аниона [B₁₂H₁₂]²⁻ в реакциях комплексообразования металлов (Cu(I)/Cu(II), Ag(I) в присутствии лигандов L с учетом физико-химических характеристик исходных реагентов;

2. Синтез новых 25 координационных соединений;

3. Анализ процессов, сопровождающих реакции комплексообразования: комплексообразование в условиях ОВР и в отсутствии окислительно-восстановительных процессов.

4. Особенности строения синтезированных соединений и закономерности в ряду состав – структура – свойства.

Апробация результатов исследования Результаты работы были представлены на российских и международных конференциях: V-VII конференция молодых ученых по общей и неорганической химии (Москва, 2015, 2016, 2017), 7th European Conference on Boron Chemistry, (Суздаль, 2016), XX Mendeleev Congress on general and applied chemistry (Екатеринбург, 2016), X Международная конференция молодых ученых по химии «МЕНДЕЕВ-2017» (Санкт-Петербург, 2017), V International Conference "Chemistry and Chemical Technology" (Ереван, 2017).

Публикации Основные материалы диссертации представлены в 7 статьях и 9 тезисах докладов на вышеуказанных конференциях.

Личный вклад автора Диссертантом самостоятельно сформулированы основные задачи, выполнен весь объем экспериментальных исследований по синтезу новых координационных соединений металлов с анионом $[B_{12}H_{12}]^{2-}$, отработаны методики получения монокристаллов для РСА. Совместно с соавторами проведены физико-химические исследования синтезированных соединений, проанализирован массив полученных физико-химических данных, на основании чего сформулированы выводы.

Структура и объем работы Работа состоит из введения, обзора литературных данных, экспериментальной части, обсуждения результатов, выводов, списка использованной литературы. Объем работы составляет 170 страниц и включает 55 рисунков, 23 схемы и 31 таблиц.

Благодарности

ИК и КР спектры записаны в лаборатории химии легких элементов и кластеров ИОНХ РАН, с.н.с., к.х.н. Гоевой Л. В.

Магнитные исследования выполнены в лаборатории магнитных исследований ИОНХ РАН, в.н.с., д.х.н. Мининым В.В., с.н.с., к.ф.-м.н. Уголковой Е.А., с.н.с., к.х.н. Ефимовым Н.Н.

Рентгеноструктурные исследования выполнены в лаборатории рентгеноструктурного

анализа ИОНХ РАН, с.н.с., к.х.н.

Поляковой И. Н.

7

Содержание работы

Введение включает актуальность темы исследования, выбор объектов и предмета исследования, определение цели и задач диссертационной работы. По результатам определены научная новизна и практическая значимость работы.

Глава 1 (литературный обзор). Глава содержит анализ, обобщение литературных данных и отражает современное состояние координационной химии по теме «Координационные соединения Cu(II) и Ag(I) с азагетероциклическими лигандами L (L = *bipy, phen, bpa*)». Проанализированы методики синтеза комплексных соединений, подробно рассмотрено строение известных комплексов. На основании анализа литературных данных определены цель и задачи настоящего исследования.

Глава 2 (экспериментальная часть) В главе изложены оригинальные методики синтеза комплексных соединений, позволяющие получать в зависимости от условий реакций комплексы меди и Ag(I) с анионом [B₁₂H₁₂]²⁻ и лигандами L различного состава и строения. Приводятся данные элементного анализа, ИК-, ЭПР спектроскопии, рентгеноструктурного анализа, а также характеристики используемых в работе приборов.

Методы и база исследования

Элементный анализ^і (С, Н и N) осуществляли на приборе CHNS–3FA 1108 (Carlo Erba). Определение содержания B, Cu и Ag выполнено методом ICP MSⁱⁱ на атомноэмиссионном спектрометре с индуктивно связанной плазмой iCAP 6300 Duo. ИК спектрыⁱⁱⁱ записывали на ИК Фурье – спектрофотометре Инфралюм ФТ–02 (НПФ АП «Люмекс») в области 4000–600 см–1 с разрешением 1 см-1. КР спектры - на ИК спектрофотометре VERTEX 70 с приставкой RAM II FT-Raman module. ЭПР спектры^{iv} твердых образцов получены на радиоспектрометре ELEXSYS – 680X фирмы «Bruker». Магнитную восприимчивость исследовали в диапазоне температур 300–2 К на автоматизированном комплексе для измерения физических свойств с опцией измерения AC и DC намагниченности PPMS 9 фирмы Quantum Design. Рентгеноструктурные исследования^v проводились на автоматических дифрактометрах Bruker AXS P4, Bruker AXS SMART и Bruker APEX DUO CCD (излучение МоК, графитовый монохроматор.

Используемые далее номера комплексов соответствуют номерам комплексов текста диссертационной работы.

Глава 3 (обсуждение результатов)

1. Координационные соединения меди(II) с анионом $[B_{12}H_{12}]^{2-}$ и азагетероциклическими лигандами L (L = *bipy*, *phen*, *bpa*).

Особенность получения комплексов Cu(II) в присутствии анионов $[B_nH_n]^{2-}$ (n = 10, 12) в первую очередь определяется их восстановительной способностью, которая количественно

характеризуется соответствующем значением электронного химического потенциала: $\mu[B_6H_6]^{2-} = 8.33, \mu[B_{10}H_{10}]^{2-} = 6.09$ и $\mu[B_{12}H_{12}]^{2-} = 5.50$ эВ, которое существенно уменьшается в ряду $[B_6H_6]^{2-} > [B_{10}H_{10}]^{2-} > [B_{12}H_{12}]^{2-}$ (оценки в DFT приближении B3Lyp/6-31+G*)¹². В свою очередь низкая восстановительная способность аниона $[B_{12}H_{12}]^{2-}$ не исключает возможность проведения реакций комплексообразования, исходя из солей или комплексов Cu(II).

Учитывая низкую восстановительную способность аниона $[B_{12}H_{12}]^{2-}$, координационные соединения получали либо в условиях протекания OBP, либо в отсутствии окислительновосстановительных процессов. В первом случае в качестве источника меди использовали катионные комплексы Cu(I) состава Cat[Cu[B_{12}H_{12}]] или соли Cu(I). Во втором – соли Cu(II) или предварительно полученные комплексы Cu(II) с азагетероциклическими лигандами. В последнем случае предполагалось проведение реакции обмена противоионами. Реакции проводили в органических растворителях CH₃CN, DMF или в смесях DMF/CH₃CN, CH₃CN/CH₂I₂; лиганды L использовали в свободном виде или в составе предварительно полученных комплексов: $[(Cu^{II}_2(\mu_2-CO_3)(bipy)_4]Cl_2\cdot bipy\cdot H_2O, [(Cu^{II}_2(\mu-CO_3)_2(bpa)_2]\cdot H_2O или [[Ag(bipy)_2]NO_3].$

1.1. Комплексообразование в условиях ОВР - система Cu^I /L/[B₁₂H₁₂]²⁻

Ранее^{13,14} было показано, что при взаимодействии CuCl с *phen* или *bipy* в смеси DMF/CH₃CN протекает окисление меди Cu(I) \rightarrow Cu(II), приводящее к выделению биядерных комплексов меди(II) с мостиковой (μ -CO₃) группой: [(Cu₂(μ ₂-CO₃)(*phen*)₄]Cl₂·DMF·H₂O, [(Cu₂(μ ₂-CO₃)(*bipy*)₄]Cl₂·*bipy*·H₂O, [(Cu^{II}₂(μ -CO₃)₂(*bpa*)₂]·H₂O.

В присутствии аниона $[B_{12}H_{12}]^{2-}$ (в качестве источника ионов меди(I) использовали анионный комплекс (C₆H₅)₄PCu^I[B₁₂H₁₂]) при двукратном избытке лигандов L (L = *bipy*, *phen*) независимо от используемого растворителя, селективно с высоким выходом, образуются биядерные комплексы меди(II) состава [Cu^{II}₂(L)₄(µ₂-CO₃)][B₁₂H₁₂]·solv.

^і Элементный анализ выполнен в ЦКП ИОНХ РАН

^в Исследование образцов методом ICP MS выполнено зав. АИЦ ФГУП «ИРЕА», к.х.н. Ретивовым В.М.

^{III} ИК и КР спектры записаны в лаборатории химии легких элементов и кластеров ИОНХ РАН, с.н.с., к.х.н. Гоевой Л.В.

¹ Магнитные исследования выполнены в лаборатории магнитных исследований ИОНХ РАН в.н.с., д.х.н. Мининым В.В, с.н.с. к.ф.-м.н. Уголковой Е.А., с.н.с., к.х.н. Ефимовым Н.Н.

^у Рентгеноструктурные исследования выполнены в лаборатории рентгеноструктурного анализа ИОНХ РАН, с.н.с., к.х.н. Поляковой И.Н.

¹² **Кочнев, В. К.** Теоретическое исследование реакций отрыва водорода H2 от моноанионов $[B_nH_{n+1}]$ (n = 6–9, 11) / В. К. Кочнев, В. В. Авдеева, Е. А. Малинина и Н. Т. Кузнецов // Журн. *Неорг. Хим.* – 2014 – т. 59 – с. 1512.

¹³ Avdeeva, V. V. Copper(I), copper(II), and heterovalent copper(I,II) complexes with 1,10-phenanthroline and the closo-decaborate anion / V. V. Avdeeva, A. E. Dziova, I. N. Polyakova, E. A. Malinina, L. V. Goeva and N. T. Kuznetsov // *Inorg. Chim. Acta.* – 2015. – vol. 430 – p. 74.

¹⁴ Дзиова, А. Э. Анти-син- и анти-анти-координация мостиковой СО₃-группы в биядерных комплексах : синтез, строение, магнитные свойства / А. Э. Дзиова, В. В. Авдеева, И. Н. Полякова, Е. А. Малинина, А. В. Ротов, Н. Н. Ефимов, Е. А. Уголкова, В. В. Минин и Н. Т. Кузнецов // Журн. Неорг. Хим. – 2014. – т. 59 – с. 51.

Схема 1 Образование биядерных комплексов Cu(II) состава $[Cu^{II}_{2}(L)_{4}(\mu_{2}-CO_{3})][B_{12}H_{12}]$ ·solv

Полученные комплексы $[Cu^{II}_2(\mu_2-CO_3)(bipy)_4][B_{12}H_{12}]\cdot CH_3CN$ (5), $[Cu^{II}_2(\mu_2-CO_3)(bipy)_4][B_{12}H_{12}]\cdot 2DMF \cdot H_2O$ (7), $[Cu^{II}_2(\mu_2-CO_3)(phen)_4][B_{12}H_{12}]\cdot DMF \cdot H_2O$ (11) были идентифицированы на основании данных элементного анализа, ИК и ЭПР спектроскопии. Строение монокристаллов установлено методом РСА. Для комплексов (7) и (11) изучены магнитные свойства.

Рисунок 1. Строение комплекса $[Cu^{II}_{2}(\mu_{2}-CO_{3})(bipy)_{4}][B_{12}H_{12}] \cdot CH_{3}CN$ (5)

ЭПР исследования комплексов общей формулы [Cu₂(µ₂-CO₃)(L)₄][B₁₂H₁₂]

Температурная зависимость магнитной восприимчивости кристаллических соединений $[Cu^{II}_{2}(\mu_{2}-CO_{3})(bipy)_{4}][B_{12}H_{12}]\cdot 2DMF\cdot H_{2}O$ (7) и $[Cu^{II}_{2}(\mu_{2}-CO_{3})(phen)_{4}][B_{12}H_{12}]\cdot DMF\cdot H_{2}O$ (11) исследована в диапазоне температур 300-2 К. Эффективный магнитный момент атома меди менялся в этом диапазоне для (7) от 0.44 до 2.06 MB, для (11) от 0.93 до 1.84 MB. В диапазоне температур от 70 – 300К температурная зависимость магнитной восприимчивости (11) описывается формулой Блини – Бауэрса для обменно-связанной пары спинов S = 1/2 при g = 2.20, J = -40 см⁻¹. Спектры ЭПР соединений (7), (11) (рис. 2) описываются ромбически-искаженным спиновым гамильтонианом с тонкой структурой для полного спина S = 1:

 $\hat{H} = \beta (g_x S_x H_x + g_y S_y H_y + g_z H_z S_z) + D(S_z^2 - S(S+1)/3) + E(S_x^2 - S_y^2)$

Где, S_x , S_y , S_z – проекции полного спина на оси *x*, *y*, *z* соответственно; *D*, *E* – компоненты тензора тонкого взаимодействия, g_x , g_y , g_z – компоненты g-тензора; *H* – приложенное магнитное поле.

Теоретическая симуляция спектров соединений (7), (11) приведена на рисунке 2, значения наилучших параметров спин-гамильтониана представлены в таблице 1. Значения

параметров спин-гамильтониана соединений (7), (11) находили методом наилучшего приближения между экспериментальными и теоретическими спектрами, путем минимизации функционала ошибки

$$F = \sum_{i} \left(Y_i^T - Y_i^E\right)^2 / N$$

здесь Y_i^E – массив экспериментальных значений интенсивности сигнала ЭПР с постоянным шагом по магнитному полю H, Y_i^T – теоретические значения при тех же значениях поля H, N – число точек.

Теоретические спектры строили способом, описанным в работе¹⁵. В качестве функции формы линии использовали сумму функций Лоренца и Гаусса¹⁶. В ходе минимизации варьировали *g* –факторы, параметры тонкого взаимодействия, ширины и формы линий.

Таблица 1. Значения параметров спин-гамильтониана для комплексов $[Cu^{II}_{2}(\mu_{2}-CO_{3})(bipy)_{4}][B_{12}H_{12}]\cdot 2DMF\cdot H_{2}O$ (7) и $[Cu^{II}_{2}(\mu_{2}-CO_{3})(phen)_{4}][B_{12}H_{12}]\cdot DMF\cdot H_{2}O$ (11)

Параметры	<i>D</i> , см ⁻¹	<i>E</i> , см ⁻¹	gx	<i>g</i> y	gz
(7)	0.03246	0.00596	2.058	2.042	2.276
(11)	0.03211	0.00763	2.075	2.021	2.223

Рисунок 2. Спектры ЭПР поликристаллических образцов $[Cu^{II}_{2}(\mu_{2}-CO_{3})(bipy)_{4}][B_{12}H_{12}]\cdot 2DMF\cdot H_{2}O$ (7) (а) и $[Cu^{II}_{2}(\mu_{2}-CO_{3})(phen)_{4}][B_{12}H_{12}]\cdot DMF\cdot H_{2}O$ (11) (б) при T = 295 К (1- эксперимент, 2- теория)

Среди синтезированных соединений обращает на себя внимание комплекс состава: [Cu₂(µ₂-CO₃)(*phen*)₄][B₁₂H₁₂]·DMF (**11**) с *анти-анти*-координацией (µ-CO₃) группы. В димере между атомами Cu(II) (Cu...Cu - 5.107 Å) наблюдаются сильные антиферромагнитные взаимодействия.

Природа азагетероциклического лиганда L оказывает существенное влияние на состав и строение конечных продуктов. Так, в случае *bpa*, взаимодействие по схеме 2 приводит к

¹⁵ Ракитин, Ю. В. Интерпретация ЭПР Спектров Координационных Соединений / Ю. В. Ракитин, Г. М. Ларин и В. В. Минин // Москва: Наука, 1993

¹⁶ Лебедев, Я. С. ЭПР и релаксация стабилизированных радикалов / Я. С. Лебедев и В. И. Муромцев //Москва: Химия, 1972.

образованию смеси продуктов биядерного комплекса Cu(II) с мостиковыми OH-группами состава [Cu^{II}₂(*bpa*)₄(µ₂-OH)₂][B₁₂H₁₂]·2DMF (**1**) (голубые) и моноядерного комплекса {[Cu^{II}(*bpa*)₂][B₁₂H₁₂]}_n (**4**) (темно-зеленые), продукты разделяли механически. Схема 2 Образование комплексов (**1**) и (**4**)

Образование биядерного комплекса формулы $[Cu^{II}_2(\mu_2-OH)_2(bpa)_4][B_{12}H_{12}] \cdot 2DMF$ отмечено и при взаимодействии (C₆H₅)₄PCu^I[B₁₂H₁₂] с предварительно полученным комплексом $[(Cu^{II}_2(\mu - CO_3)_2(bpa)_2] \cdot H_2O$ в DMF. Согласно данным PCA, биядерные комплексы общей формулы $[Cu^{II}_{2}(\mu_{2}-OH)_{2}(bpa)_{4}][B_{12}H_{12}]\cdot 2DMF$, синтезированные по различным методикам, представляют собой две полиморфные модификации. Анализ структур в базе университета¹⁷ Кембриджского показал, комплексе $[Cu^{II}_2(\mu_2$ данных что в $OH_{2}(bpa)_{4}[B_{12}H_{12}] \cdot 2DMF$ (1) впервые реализуется неискаженная плоско-квадратная геометрия (угол отклонения от плоскости 0 °) координационного окружения атомов Си. В комплексе { $[Cu^{II}_2(\mu_2-OH)_2(bpa)_4][B_{12}H_{12}]\cdot 2DMF$ }_n (3) происходит незначительное искажение плоской координации (угол отклонения от плоскости ~ 5 °) за счет π - π стейкинг взаимодействий между лигандами соседних комплексов при упаковке кристалла. Расстояния Cu-N находятся в диапазоне 2,003-2,016 Å для (1) и 1,979(1)-2,004(1) для (3); Cu-O находятся в диапазоне 2,365 и 1,927(1)-1,943(1) Å для (1) и (3), соответственно. Расстояние π-π стейкинг взаимодействия для (3) 3.645 Å, угол 0 °.

Проведение реакций комплексообразования, исходя из CuCl в DMF в присутствии L (L = *bipy*, *bpa*), привело к выделению комплексов Cu(II), содержащих моноядерные комплексные катионы различного состава: $[Cu^{II}(bipy)_2Cl]_2[B_{12}H_{12}] \cdot 2DMF$ (**10**) и $[Cu^{II}(bpa)_2(DMF)_2][B_{12}H_{12}] \cdot 2DMF$ (**2**), строение которых определено методом PCA.

1.2. Комплексообразование в условиях OBP - система Cu^I(Ag^I)/[B₁₂H₁₂]²⁻/L/solv

Среди исследованных взаимодействий особое внимание заслуживают реакции получения комплексов Cu(II) в присутствии соединений Ag(I), например, [Ag₂[B₁₂H₁₂]], [CsAg[B₁₂H₁₂]] или [Ag(*bipy*)₂]NO₃. В реакционном растворе, содержащем одновременно два металла Cu(I) и Ag(I), наряду с окислением Cu⁺ до Cu²⁺ в присутствии L наблюдается

¹⁷ Groom, C. R. The Cambridge Structural Database in Retrospect and Prospect / C. R. Groom and F. H. Allen // Angew. Chem. Int. Ed. – 2014. – vol. 53 – p. 662.

восстановление $Ag^+ \rightarrow Ag^0$. В результате OBP из реакционных растворов выделяются преимущественно полиядерные координационные соединения Cu(II).

При взаимодействии $[Ag_2[B_{12}H_{12}]]$ и CuCl с *bipy* (Схема 3) и (C₆H₅)₄PCu^I[B₁₂H₁₂] с $[Ag(bipy)_2]NO_3$ (Схема 4) в качестве основного продукта выделяется трехъядерный комплекс состава $[Cu_3^{II}(\mu_3-CO_3)(bipy)_6][B_{12}H_{12}]_2 \cdot 2H_2O \cdot 4,5DMF$ (6), выход которого ~ 50%. Следует отметить, что в качестве вторых продуктов, с низким выходом, выделяются комплексы $[[Cu^{II}_2(\mu_2-CO_3)(bipy)_4][B_{12}H_{12}]_2 \cdot 2H_2O \cdot 2DMF]_n$ (7) ((7) образуется также селективно при взаимодействии (C₆H₅)₄PCu^I[B₁₂H₁₂] с *bipy* в DMF)) и моноядерный комплекс $[[Cu^{II}(bipy)(DMF)_4][B_{12}H_{12}]]_n$ (8),соответственно.

Схема 3 Образование комплексов (6) и (7)

Схема 4 Образование комплексов (6) и (8)

Строительными единицами кристалла (6) являются катионы $[Cu_3(\mu_3-CO_3)(bipy)_6]^{4+}$ (Рис. 3), анионы $[B_{12}H_{12}]^{2-}$ и сольватные молекулы DMF и H₂O. В комплексе наблюдается $\mu_3-\eta^1\eta^1\eta^1$ координация карбонатной группы, при которой каждый атом кислорода связан с атомом Cu(II). Катион имеет *син-анти*-конфигурацию по отношению ко всем связям С-О. Расстояния Cu-Cu: - 4.663, 4.666 и 4.888 Å. Для комплекса изучены магнитные свойства.

Рисунок 3 Строение катионной части комплекса $[Cu^{II}(\mu_3-CO_3)(bipy)_6][B_{12}H_{12}]_2 \cdot 2H_2O \cdot 4,5DMF$ (6) (атомы углерода и водорода лигандов bipy не показаны)

ЭПР исследования комплекса [Cu₃(bipy)₆(µ₃-CO₃)][B₁₂H₁₂]₂·4,5DMF·2H₂O

Температурная зависимость магнитной восприимчивости кристаллического образца [Cu₃^{II}(µ₃-CO₃)(*bipy*)₆][B₁₂H₁₂]₂·2H₂O·4,5DMF (**6**) была исследована в интервале температур 2-300 К. Магнитный момент атома меди менялся в диапазоне температур от 1.33 до 1.98 µ_B.

При интерпретации магнитной восприимчивости трехъядерного комплекса использовался спиновой гамильтониан (СГ)

$$\hat{H} = -2J_1 \cdot (S_1 S_2 + S_1 S_3) - 2J_2 S_2 S_3 \tag{1}$$

Три взаимодействующих спина 1/2 могут образовать одно состояние с полным спином 3/2 и два состояния с полным спином 1/2. Собственные энергии спиновых состояний $E(3/2) = -J_1 - J_2/2$, $E_1(1/2) = 3J_2/2$, $E_2(1/2) = 2J_1 - J_2/2$. Магнитная восприимчивость трехядерного комплекса рассчитывалась по известному уравнению¹⁸:

$$\chi_{M} = \frac{N_{A}g^{2}\beta^{2}}{kT} \frac{1/2 \cdot \exp\left(-\frac{E_{1}(1/2)}{kT}\right) + 1/2 \cdot \exp\left(-\frac{E_{2}(1/2)}{kT}\right) + 5 \cdot \exp\left(-\frac{E(3/2)}{kT}\right)}{2 \cdot \exp\left(-\frac{E_{1}(1/2)}{kT}\right) + 2 \cdot \exp\left(-\frac{E_{2}(1/2)}{kT}\right) + 4 \cdot \exp\left(-\frac{E(3/2)}{kT}\right)}.$$

Наилучшее согласие с экспериментом достигается при $2J_1 = 9.82$ см⁻¹, $2J_2 = -8.26$ см⁻¹ и g = 2.14. На рис. 4 приведена температурная зависимость магнитной восприимчивости χ (см³/моль) комплекса [Cu₃^{II}(µ₃-CO₃)(*bipy*)₆][B₁₂H₁₂]₂·2H₂O·4,5DMF (**6**). При таком значении параметров СГ энергия спинового состояния E(3/2) лежит между энергиями $E_1(1/2)$ и $E_2(1/2)$ (Рис. 5 (б)).

Рисунок 4. Температурная зависимость магнитной восприимчивости χ (см³/моль) комплекса [Cu₃^{II}(µ₃-CO₃)(*bipy*)₆][B₁₂H₁₂]₂·2H₂O·4,5DMF (**6**)

Рисунок 5. Геометрическая модель обмена в трехядерном комплексе $[Cu_3^{II}(\mu_3 - CO_3)(bipy)_6][B_{12}H_{12}]_2 \cdot 2H_2O \cdot 4,5DMF$ (a); схема расположения энергий спиновых состояний трехядерного комплекса при наилучших параметрах СГ (1) (б)

¹⁸ Калинников, В. Т. Введение в магнетохимию. Метод статистической магнитной восприимчивости в химии / В. Т. Калинников и Ю. В. Ракитин // Москва: Наука, 1980

Спектр ЭПР комплекса (6) моделировали как сумму трех комплексов, два из которых имеют спин 1/2 и один – спин 3/2. Концентрации комплекса в различных спиновых состояниях рассчитывались из больцмановских заселенностей соответствующих уровней. Спектр комплекса описывается суммой ромбически-искаженного спинового гамильтониана с тонкой структурой (1) (для спина 3/2) и двух ромбически-искаженных спиновых гамильтонианов, не имеющих тонкой структуры (2) для комплексов со спином 1/2. Гамильтониан с тонкой структурой имеет вид:

$$\hat{H}_{3/2} = \beta(g_x S_x H_x + g_y S_y H_y + g_z H_z S_z) + D(S_z^2 - S(S+1)/3) + E(S_x^2 - S_y^2)$$
(2)

где S = 3/2 полный спин, S_x , S_y , S_z – проекции полного спина на оси x, y, z соответственно; D, E – компоненты тензора тонкого взаимодействия, g_x , g_y , g_z – компоненты g-тензора; H – приложенное магнитное поле.

Спин-гамильтониан комплексов со спином 1/2 (2) имеет следующий вид:

$$\hat{H}_{1/2} = \beta (g_x S_x H_x + g_y S_y H_y + g_z H_z S_z)$$
(3)

где *S* полный спин комплекса, *S* = 1/2. Параметры двух различных комплексов со спином 1/2 приняты равными.

В настоящей работе компьютерная симуляция спектра ЭПР соединения проводилась с использованием метода Белфорда¹⁹. Параметры D и E и компоненты g-тензора приведены в таблице 2.

Таблица 2. Значения параметров D и E CГ(1) и компоненты g-тензора CГ (1) и (2) для $[Cu_3^{II}(\mu_3-CO_3)(bipy)_6][B_{12}H_{12}]_2 \cdot 2H_2O \cdot 4,5DMF$ (6)

Параметры	S _{спин}	С,%	<i>D</i> , см ⁻¹	<i>E</i> , см ⁻¹	g _x	<i>g</i> y	gz
(6)	1/2	66,6			2.050	2.100	2.210
(6)	3/2	33,4	0.01767	0.013	2.110	2.030	2.190

ЭПР спектр соединения [Cu₃^{II}(μ_3 -CO₃)(*bipy*)₆][B₁₂H₁₂]₂·2H₂O·4,5DMF (**6**) интересен тем, что в области ~1000 Гс имеется мало интенсивный переход в дополнение к обычному «запрещенному» переходу в половинном поле (Рис. 6 (a)). Формально это переход между состояниями |-3/2> \rightarrow |3/2> с $\Delta M = \pm 3$. Наличие этого «дважды запрещенного перехода» свидетельствует, что в системе присутствует состояние с полным спином S = 3/2. В действительности тензор тонкого взаимодействия, при условии, что *D*, *E*<<*hv*, примешивает

¹⁹ Belford, G. / G. Belford, R. L. Belford and J. F. Burkhaven // J. Magn. Res. - 1973. - vol. 11 - p. 2749

к состоянию |3/2> состояние |-1/2>, а к состоянию |-3/2> состояние |1/2>, что делает возможным подобный переход ^{15, 20}.

Рисунок 6. а) Спектр ЭПР поликристаллического $[Cu_3^{II}(\mu_3-CO_3)(bipy)_6][B_{12}H_{12}]_2 \cdot 2H_2O \cdot 4,5DMF$ (6) при T = 293 K (1 – эксперимент, 2 –теория) б) Диаграмма энергетических уровней и разрешенных (H ~ 3000 Гс), запрещенных (H ~ 1500 Гс) и "дважды запрещенного" (H ~ 1000 Гс) переходов для спина S = 3/2 в предположении D, E<< hv.

Таким образом данные магнитной восприимчивости и особенности, обнаруженные в ЭПР спектрах образца, вероятно обусловлены влиянием на систему в целом внешнесферного додекагидро-*клозо*-додекаборатного аниона. Анион $[B_{12}H_{12}]^{2-}$ представляет собой электрондефицитную систему, способную образовывать многочисленные специфические контакты с участием ВН-групп икосаэдра и молекулами лиганда и/или растворителя по типу В-Н...Н-С, В-Н...Н-О и др²¹. Совокупность этих взаимодействий и особенности электронного строения кластерного аниона бора, вовлеченого в систему обменных процессов вероятно и приводит к необычному магнитному поведению синтезированного трехядерного комплекса.

Как оказалось, в системе $Cu^{I}(Ag^{I})/[B_{12}H_{12}]^{2}/L/solv.$ состав исходных реагентов и природа органического лиганда L существенно влияют на ход реакции комплексообразования. Так, для лиганда *phen* по схеме 5, включающей те же исходные реагенты, образуется только биядерный комплекс $[Cu^{II}_{2}(\mu_{2}-CO_{3})(phen)_{4}][B_{12}H_{12}]\cdot DMF \cdot H_{2}O$ (11).

Схема 5. Образование комплекса (11)

 ²⁰ Абрагам, А. Электронный парамагнитный резонанс переходных ионов; в 2х томах / А. Абрагам и Б. Блини // Москва: МИР, 1972
²¹ Малинина, Е. А. Специфические взаимодействия в солях и комплексах металлов с кластерными анионами бора B_nH_n²⁻ (n = 6, 10, 12) / Е. А. Малинина, В. В. Авдеева, Л. В. Гоева, И. Н. Полякова и Н. Т. Кузнецов // *Журн. Неорг. Хим.* – 2011. – т. 56 – с. 735

Схема 6 Образование комплексов (12) и (13)

Использование в качестве исходного реагента комплекса [CsAg[B₁₂H₁₂]] в сочетании с CuCl и *phen*, приводит к выделению в качестве основного продукта тетраядерного комплекса [Cu^{II}₄((μ_3 -OH)₂(μ_2 -OH)₂(DMF)₂(*phen*)₄][B₁₂H₁₂]₂·0.16H₂O (**12**) и второго продуктамоноядерного комплекса [Cu(*phen*)₂[B₁₂H₁₂] (**13**) (схема 6).

Структура комплекса (12) построена из центросимметричных биядерных комплексных катионов $[(Cu(phen))(\mu_2-OH)_2(Cu(phen)DMF)]^{2+}$ (Рис. 7(а)) и анионов $[B_{12}H_{12}]^{2-}$. Каждая палуба состоит из [Cu(phen)] и [Cu(phen)DMF] фрагментов, соединенных двумя OH-мостиками. Расстояние Cu(1)...Cu(2) 2,9402(3) Å является самым коротким расстоянием Cu-Cu в ядре комплексного катиона. Расстояние Cu(1)...Cu(1)' и Cu(1)...Cu(2)' составляет 3,1609(3) и 3,6374(4) Å.

Рисунок 7. а) Строение комплекса $[Cu^{II}_4((\mu_3-OH)_2(\mu_2-OH)_2(DMF)_2(phen)_4][B_{12}H_{12}]_2 \cdot 0.16H_2O$ (12) б) Строение комплекса $\{[Cu^{II}(phen)_2][B_{12}H_{12}]\}_n$ (13)

Структура моноядерного комплекса $\{[Cu^{II}(phen)_2][B_{12}H_{12}]\}_n$ (13) построена из комплексных катионов $[Cu(phen)_2]^{2+}$ и анионов $[B_{12}H_{12}]^{2-}$. Атом Си координирует четыре атома N молекул *phen* (Рис. 7(б)**Ошибка! Источник ссылки не найден.**). Длины связей Си-N составляют 1,993(6) и 2,000(6) Å. Координационный полиэдр атома меди дополнен двумя атомами водорода ВН группы аниона $[B_{12}H_{12}]^{2-}$. Слабые B(1)-H(1)...Си взаимодействия (H...Cu, 2,85 Å, B...Cu, 3,765(7) Å, угол ВНСи, 131°) связывают катионы и анионы в цепи, идущими вдоль оси b.

В случае проведения реакций с *bpa* в системе Cu^I(Ag^I)/[B₁₂H₁₂]²⁻/L/solv влияние состава исходных реагентов на продукты реакции обнаружено не было. Так, взаимодействие

 $[Ag_2[B_{12}H_{12}]]$ или $[CsAg[B_{12}H_{12}]]$ с *bpa* в присутствии CuCl приводит к селективному выделению моноядерного комплекса $[Cu(bpa)_2(DMF)_2][B_{12}H_{12}] \cdot 2DMF$ (2).

При использовании в качестве исходных соединений соединения Ag и предварительно синтезированного комплекса Cu(II) в реакции с *bipy* удалось селективно синтезировать биядерный комплекс Cu(II) с мостиковой OH-группой (схема 7).

Схема 7 Получение комплекса [Cu₂(µ-OH)₂(*bipy*)₂(DMF)₂][B₁₂H₁₂]·2DMF(9)

Реакцию проводили в DMF при температуре 5-8°С.

Структура комплекса (9) построена из биядерных комплексных катионов $[(Cu_2(bipy)_2(OH)_2(DMF)_2]^{2+}$, аниона $[B_{12}H_{12}]^{2-}$ и молекул DMF. Комплексный катион состоит из [Cu(bipy)DMF] фрагментов, соединенных двумя мостиковыми OH-группами. Расстояние Cu...Cu' составляет 2.9346(11) Å. При упаковке кристалла между лигандами соседних комплексных катионов наблюдаются π - π стейкинг взаимодействия, расстояние между центрами плоскостей составляет 3,606 Å.

1.3. Комплексообразование в отсутствии ОВР - система Си^{II} /L/[B₁₂H₁₂]²⁻

Низкая восстановительная способность аниона $[B_{12}H_{12}]^{2-}$ не исключает возможности получения искомых соединений на основе солей или предварительно полученных комплексов Cu(II) с азагетероциклическими лигандами L и хлорид-ионами в качестве противоионов. В основном этот процесс сводится к реакции обмена противоионами.

Так, при взаимодействии $[(C_4H_9)_3NH]_2[B_{12}H_{12}]$ с $[(Cu^{II}_2(\mu_2-CO_3)(phen)_4]Cl_2 \cdot DMF \cdot H_2O$ выделяется биядерный комплекс $[Cu^{II}_2(\mu_2-CO_3)(phen)_4][B_{12}H_{12}] \cdot DMF \cdot H_2O$ (**11**).

Схема 8. Получение комплекса (11)

Более сложные превращения были отмечены при взаимодействии $[(C_6H_5)_4P]_2[B_{12}H_{12}]$ с $[(Cu^{II}_2(\mu_2-CO_3)_2(bpa)_2]Cl_2\cdot H_2O$ в DMF. В результате из реакционного раствора был выделен биядерный комплекс состава { $[Cu_2(\mu_2-OH)_2(bpa)_2][B_{12}H_{12}]\cdot 2DMF$ } (3).

Следует отметить, что природа исходных реагентов и растворителя влияет на состав образующихся соединений. Так, при взаимодействии (C₆H₅)₄PCu[B₁₂H₁₂] с предварительно

полученным комплексом [($Cu_2(phen)_4(\mu-CO_3)$]Cl₂·DMF·H₂O в смеси CH₃CN/CH₂I₂ образуется моноядерный комплекс Cu(II) состава [Cu(*phen*)₂Cl]₂[B₁₂H₁₂]·2CH₂I₂ (**17**).

Схема 9. Получение комплекса (17)

Несмотря на присутствие в реакционном растворе ионов Cu(I) и Cu(II) OBP не протекает, фактически образование конечного продукта происходит за счет разрушения комплекса Cu(II) по мостиковой CO₃-группе с образованием фрагментов [Cu(phen)₂]²⁺, которые выводятся из реакционного раствора крупным анионом [B₁₂H₁₂]²⁻, при этом присутствующие в реакционном растворе ионы Cl⁻ дополняют координационное окружение атома Cu(II). Следует отметить, отсутствие В что реакционном растворе конкурентноспособных ионов Cl⁻ приводит к формированию комплекса состава анион $[B_{12}H_{12}]^{2-}$, участвует [Cu(*phen*)₂][B₁₂H₁₂] (**13**), в последнем В насыщении координационной сферы Си(II).

ЭПР исследования комплекса [Cu(phen)₂Cl]₂[B₁₂H₁₂]·2CH₂I₂(17)

Электронное строение моноядерного комплекса $[Cu(phen)_2Cl]_2[B_{12}H_{12}] \cdot 2CH_2I_2$ (17) (Рис.8) изучено методом ЭПР при T = 295 К. Спектр соединения описывается ромбическим спиновым гамильтонианом (СГ) с зеемановским и сверхтонким взаимодействием:

$$H = g_z \beta H_z S_z + g_x \beta H_x S_x + g_y \beta H_y S_y + a I_z S_z + b I_x S_x + c I_y S_y$$

где g_z , g_x , $g_y - z$, x, y - компоненты g-тензора, S_z , S_x , S_y – проекции оператора спина на координатные оси, S=1/2, a, b, c - z, x, y - компоненты СТС –тензора, I_z , I_x , I_y – проекции оператора ядерного спина центрального атома меди на координатные оси, I = 3/2.

Параметры комплекса находили методом наилучшего приближения между экспериментальными и теоретическими спектрами путем минимизации функционала ошибки

$$F = \sum_{i} \left(Y_i^T - Y_i^E \right)^2 / N$$

В соответствии с теорией релаксации ширину линий задавали выражением

$$\Delta H = \alpha + \beta m_I + \gamma m_I^2$$

где m_I – проекция ядерного спина на направление магнитного поля, α , β , γ - параметры. В ходе минимизации варьировали g –факторы, константы СТС, ширины и формы линий комплекса. Получены следующие параметры СГ: $g_z = 2.207$; $g_x = 2.116$; $g_y = 2.082$; $a = 2.82 \times 10^{-3}$ см⁻¹; $b = 4.38 \times 10^{-3}$ см⁻¹; $c = 6.97 \times 10^{-3}$ см⁻¹.

Необычный для меди(II) вид спектра, а именно появление СТС в высокополевой части спектра, можно объяснить сильным тетраэдрическим искажением координационного полиэдра.

Рисунок 8. Спектр ЭПР поликристаллического образца [Cu₂(phen)₂Cl₂]₂[B₁₂H₁₂]·2CH₂I₂ (T = 295 К; 1-эксперимент, 2 – симуляция).

2. Координационные соединения Cu^{I} , Cu^{II} и Cu^{I} с анионом $[B_{12}H_{12}]^{2}$ и phen

Проведенные исследования реакций комплексообразования, исходя из соединений Cu(I), показали, что протекание окислительно-восстановительных процессов в системе зависит от восстановительной способности аниона $[B_{12}H_{12}]^{2-}$, от L и от используемого растворителя. Так, например, в случае аниона $[B_{12}H_{12}]^{2-}$ снижение скорости OBP было обнаружено в системе Cu/(*phen*)/[B₁₂H₁₂]²⁻/solv при использовании в качестве растворителя CH₃CN. В результате по схеме 10 был выделен смешанно катионный комплекс состава {[Cu^{II}(*phen*)₃][Cu^I(*phen*)₂]₂}[B₁₂H₁₂]₂ (**14**).

Схема 10 Образование комплекса { $[Cu^{II}(phen)_3][Cu^{I}(phen)_2]_2$ }[B₁₂H₁₂]₂ (14)

Анализируя данную реакцию, следует отметить несомненную роль растворителя, в котором окислительно-восстановительный процесс с участием *phen* протекает с меньшей скоростью, что обеспечивает лишь частичное окисление ионов Cu(I). Образование смешанно катионного комплекса (**14**) наблюдается и в системе CH₃CN/CH₂I₂. В указанных условиях из реакционного раствора фракционно была выделена смесь продуктов: комплекс (**14**) и трисхелатный комплекс меди(II) [Cu^{II}(*phen*)₃][B₁₂H₁₂]·0,45(CH₂I₂)·1,55CH₃CN (**15**), образующийся из маточного раствора на воздухе во времени (Схема 11) Схема 11 Получение комплекса [Cu^{II}(*phen*)₃][B₁₂H₁₂]·0,45(CH₂I₂)·1,55CH₃CN (15)

Кристаллы гетеровалентного соединения (14) построены из катионов $[Cu(phen)_2]^+$ и $[Cu(phen)_3]^{2+}$ и $[B_{12}H_{12}]^{2-}$ анионов (Рис. 9). Атом Cu(1) имеет искаженную октаэдрическую координацию, образованную шестью атомами азота. Длины связей Cu(1)-N составляет 2,034(2) и 2,058(2) Å, а осевые связи удлинены до 2,289(2) Å. Атом Cu(2) координирует четыре атома N лиганда *phen*. Координационное окружение Cu(2) представляет собой искаженный тетраэдр.

Рисунок 9. Строение комплекса ${[Cu^{II}(phen)_3][Cu^{I}(phen)_2]_2}{[B_{12}H_{12}]_2}$ (14).

Для минимизации OBP в системе Cu^I/L/[B₁₂H₁₂]²⁻ и стабилизации комплексов Cu(I) в реакционную систему необходимо введение восстановителя. В качестве восстанавливающих агентов были выбраны редокс-активные реагенты, включающие растворитель (CH₂I₂) и лиганд (Ph₃P). Ранее при получении анионных комплексов Cu(I) состава [(Cat)Cu[B₁₂H₁₂]] (система Cu^{II}/[B₁₂H₁₂]²⁻/H₂O), в качестве восстановителя использовали водорастворимые соединения, такие как Na₂SO₃ или SO₂²². Существенно минимизировать OBP в системе Cu/(*phen*)/[B₁₂H₁₂]²⁻/CH₃CN/CH₂I₂ удалось введением в реакционный раствор избытка Ph₃P в C₆H₆ и снижением температуры реакции (5-8°C). В результате был выделен катионный комплекс Cu(I) - [Cu^I(*phen*)₂]₂[B₁₂H₁₂]·C₆H₆ (**16**) (Схема 12).

Схема 12. Получение комплекса $[Cu^{I}(phen)_{2}]_{2}[B_{12}H_{12}] \cdot C_{6}H_{6}$ (16)

²² Malinina, E. A. Silver(I) and copper(I) complexes with the closo-decaborate anion $B_{10}H_{10}^{2-}$ as a ligand / E. A. Malinina, K. Y. Zhizhin, I. N. Polyakova, M. V. Lisovsky and N. T. Kuznetson // *Russ. J. Inorg. Chem.* – 2002. – vol. 47 – p. 1157.

Кристаллическая структура комплекса (16) построена из комплексных катионов $[Cu(phen)_2]^+$, анионов $[B_{12}H_{12}]^{2-}$ и молекул (Рис.10). Координационный полиэдр атома Cu(I) в (16) аналогичен полиэдру комплекса (14), а именно четыре атома N образуют искаженный тетраэдр. Связи Cu-N (2.0113(18) и 2.0642(19) Å) имеют примерно такую же длину, что и в (14). Тетраэдр меди(I) в комплексе (16) сплющен.

Рисунок 10. Строение комплекса $[Cu^{I}(phen)_{2}]_{2}[B_{12}H_{12}] \cdot C_{6}H_{6}$ (16).

Следует отметить, что при формировании координационного окружения ионов Cu(I) мягкое основание – (Ph₃P) оказалось не конкурентоспособным бидентатному *phen*, как, в прочем, и анион $[B_{12}H_{12}]^{2-}$, который в соединении выполняет роль противоиона.

На основании литературных и экспериментально полученных данных, для кластерных анионов бора $[B_nH_n]^{2-}$ (n = 10, 12) можно сделать следующее заключение; в присутствии аниона $[B_{10}H_{10}]^{2-}$, проявляющего высокую восстановительную способность, получение смешаннокатионных комплексов Cu(I,II) и комплексов Cu(I) с L, исходя из комплексов Cu(I) сводится к инициированию процесса окисления Cu(I). В случае аниона $[B_{12}H_{12}]^{2-}$ для получения смешаннокатионных комплексов и комплексов Cu(I) необходимо в системе Cu^I/L/[B₁₂H₁₂]²⁻/solv подавление процесса окисления Cu(I)—Cu(II). Для реализации этих задач требуются принципиально разные подходы: для аниона $[B_{10}H_{10}]^{2-}$ кардинальное изменение физико-химических параметров реакции, таких как температура и атмосфера процесса; в случае аниона $[B_{12}H_{12}]^{2-}$ введение в реакционные растворы редокс-активных исходных компонентов.

3. Координационные соединения серебра(I) с додекагидро-*клозо*-додекаборатным анионом $[B_{12}H_{12}]^{2-}$ и азагетероциклическими лигандами L (L = *bipy*, *phen*, *bpa*)

3.1. Координационные соединения серебра(I) с лигандами L (L = bipy, phen, bpa)

С целью определения влияния природы азагетероциклических лигандов L на процесс комплексообразования Ag(I), первоначально были синтезированы и исследованы соответствующие комплексы с нитрат анионом. Из реакционных растворов, содержащих

 $Ag(NO_3)_2$ и L при соотношении компонентов 1:2 были выделены комплексы Ag(I){ $[Ag(bipy)_2]NO_3$ }_n (**a**), { $[Ag(\mu-NO_3)(bpa)_4]$ }_n (**b**), $[Ag(phen)_2]NO_3$ (**c**).

В ИК спектрах комплексов (**a**) и (**c**) в области валентных колебаний v(N=O) NO₃группы присутствует интенсивная уширенная полоса около 1380 см⁻¹, отражающая внешнесферное положение NO₃ – группы в комплексах. В ИК спектре комплекса (**b**) наличие двух интенсивных полос в данной области, v_{as} (N=O) при 1470 см⁻¹ и v_{s} (N=O) при 1330 см⁻¹, свидетельствует о бидентатной координации NO₃-групп к атомам Ag(I).

О координации молекул азагетероциклических лигандов L к атому металла свидетельствует перераспределение интенсивностей полос колебаний гетероцикла в интервале 1600-700 см ⁻¹ с одновременным повышением колебательных частот v(CC) и v(CN), $\Delta v \sim 25$ см⁻¹. В КР спектре комплекса (**a**) наблюдается узкая интенсивная полоса валентных колебаний связи металл-металл, v(Ag–Ag) при 253 см⁻¹ с низкочастотным плечом при 237 см⁻¹. Аналогичная полоса поглощения в данной области спектра для комплексов (**b**) и (**c**) отсутствует.

Пригодные для РСА монокристаллы (a)-(c) были получены перекристаллизацией из DMF. По данным РСА, параметры ячейки монокристалла (b), соответствуют параметрам соединения $\{[AgNO_3(bpa)_4]\}_n$, полученного взаимодействием AgNO₃ с четырехкратным избытком *bpa* в метаноле²³. Следует отметить, что определение строения комплекса (b) нами и авторами¹⁷ проходило независимо и одновременно и на момент опубликования наших данных структура (b) в базе данных²⁴ отсутствовала. Монокристалл, использованный в нашем эксперименте, был больше по размеру, что позволило провести эксперимент в другом температурном диапазоне, собрать отражения с более высоким h_{max} и получить более низкие ошибки в геометрических параметрах. Более высокая точность эксперимента позволила нам выделить третью ориентацию неупорядоченных нитрат-групп. В целом структура (b), определенная в нашем исследовании, совпадает со структурой, описанной авторами¹⁷.

Строение комплекса $\{[Ag(bipy)_2]NO_3\}_n$ (**a**) определено впервые. В комплексах $\{[Ag(bipy)_2]NO_3\}_n$ (**a**), $[Ag(phen)_2]NO_3$ (**c**) и $\{[Ag(\mu-NO_3)(bpa)_4]\}_n$ (**b**) молекулы азагетероциклического лиганда проявляют бидентатноциклическую и монодентатную координацию к атомам серебра соответственно. В комплексах $\{[Ag(bipy)_2]NO_3\}_n$ (**a**) и $[Ag(phen)_2]NO_3$ (**c**) молекулы NO3-групп располагаются во внешней сфере комплекса, для $\{[Ag(\mu-NO_3)(bpa)_4]\}_n$ (**b**) – выступают в роли мостикового лиганда. В комплексе

²³ **Parashchenko, Y.** Tetrakis[bis(piridine-2-yl)amine-kN2](nitrato-ko)silver(I) / Y. Parashchenko, A. Pavlishchuk, N. A. Bokach и M. Haukka // *Acta Cryst., Sect. E.* – 2014. – vol. 70 – p. m58.

²⁴ Groom, C. R. The Cambridge Structural Database in Retrospect and Prospect / C. R. Groom and F. H. Allen // Angew. Chem. Int. Ed. – 2014. – vol. 53 – p. 662

 ${[Ag(bipy)_2]NO_3}_n$ (**a**) обнаружены контакты Ag-Ag, их значения составляют 3,725 Å. За счет контактов Ag-Ag, комплексные катионы $[Ag(bipy)_2]^+$ формируют полимерную цепь. Данные PCA для (**a**) – (**c**) находятся в хорошем соответствии с данными ИК и КР спектроскопии.

3.2. Координационные соединения серебра(I) с лигандами L и анионом [B₁₂H₁₂]²⁻

3.2.1. Комплексы полимерного строения

Анализируя изученные взаимодействия, очевидно, что некоторые реакции, схема 16, могли бы приводить к образованию как моно-, так и биядерных комплексов Ag(I).

Схема 2. Предполагаемая схема образования моно- и биядерных комплексов серебра(I)

Однако ни увеличение размера катиона (Cat = Cs⁺, (C₄H₉)₃NH⁺, (CH₂NaphPh₃P)⁺), ни увеличение соотношения Met-L до значений 1 : 4 не привело к желаемому результату.

Было установлено, что в присутствии хелатирующих лигандов L независимо от природы катиона Cat в исходном реагенте, соотношения компонентов реакции и растворителя наблюдается селективное формирование устойчивых 1D полимеров состава [Ag₂[µ-B₁₂H₁₂](L)₂]_n.

Схема 13. Схема получения комплексов серебра(I) полимерного строения.

Полученные в ходе исследования комплексы $[Ag_2[\mu-B_{12}H_{12}](bpa)_2]_n$ (18), $[Ag_2[\mu-B_{12}H_{12}](phen)_2]_n$ ·DMF (19), $[Ag_2[\mu-B_{12}H_{12}](bipy)_2]_n$ ·2CH₃CN (20) были идентифицированы на основании данных элементного анализа, ИК-спектроскопии; методом РСА установлено строение монокристаллов (18)-(20), выделенных непосредственно из реакционных растворов.

Кристаллы комплексов (**18**)-(**20**) имеют 1D полимерное строение. В тетрагональном кристалле (**20**) координационный полиэдр Ag(1) формируют два атома N молекулы *bipy* и два ребра B(1)H(1)- B(2)H(2) симметрически связанных анионов $[B_{12}H_{12}]^{2-}$ (Рис.11). Связи атома Ag(1) с двумя BH-группами различаются по длине - Ag(1)-B(1) 2.750(4), Ag(1)-H(1) 2.17(4) и Ag(1)-B(2) 2.864(4), Ag(1)-H(2) 2.38(4)Å.

Координационный полиэдр Ag(1) имеет неправильную форму, его КЧ равно 4+2. Анион координирует четыре атома Ag(1) симметрически эквивалентными ребрами 1-2, 3-4, 9-12 и 10-11. Комплексы (20) объединены в ленты, вытянутые в направлении оси *с*. Двугранный угол между плоскостями соседних молекул *bipy* в ленте составляет 54.5°. Сольватные молекулы CH₃CN расположены между молекулами *bipy*.

Рисунок 11 Строение цепочки в структуре [Ag₂[µ-B₁₂H₁₂](*bipy*)₂]_n·2CH₃CN (**20**). Комплексы (**18**)-(**19**) изоструктурны комплексу (**20**).

Синтезированные в работе координационные полимеры общей формулы $[Ag_2[\mu-B_{12}H_{12}](L)_2]_n$ (L = *bipy, bpa* и *phen*) являются первыми примерами 1D полимеров серебра на основе полидентатного аниона $[B_{12}H_{12}]^{2-}$ и азагетероциклических лигандов L. Специфика строения и свойства аниона $[B_{12}H_{12}]^{2-}$ способствует формированию различных структурных типов упаковки получаемых координационных соединений.

3.2.2. Условия образования и строение дискретных комплексов

В ходе исследования было обнаружено, что формирование биядерных комплексов Ag(I) с анионом [B₁₂H₁₂]²⁻ и L возможно при наличии в реакционном растворе конкурентоспособного терминального лиганда или молекул (например, растворителя), способных за счет дальних контактов участвовать в обрыве полимерной цепи.

3.2.2.1. Влияние растворителя

При взаимодействии $[Ag_2[B_{12}H_{12}]]$ и *bpa* в DMF независимо от соотношения компонентов селективно образуется биядерный комплекс состава $[Ag_2[\mu - B_{12}H_{12}](bpa)_2] \cdot 2DMF$ (25).

Метом РСА определено строение комплекса (25), монокристаллы, которого выделены из реакционного раствора. Кристаллы построены из биядерных $[(bpa)Ag[\mu-B_{12}H_{12}]Ag(bpa)]$ комплексов и молекул DMF (Puc.12). Атом Ag(1) имеет тригональную координацию, образованную двумя атомами азота N(1) хелатирующего *bpa*-лиганда (Ag(1)-N 2.2745(15) Å) и группой B(1)-H(1) кластерного аниона бора (Ag(1)-B(1) 2.413(3) Å; Ag(1)-H(1) 1,92(4) Å, угол Ag(1)-H(1)-B(1) 99(2) °). Две молекулы DMF координированы к комплексу водородными связями N-H...O, что способствует разрыву потенциальной полимерной цепи.

Рисунок 12. Строение биядерного комплекса $[Ag_2[\mu-B_{12}H_{12}](bpa)_2]$ ·2DMF (25)

3.2.2.2. Комплексообразование в присутствии трифенилфосфина

При взаимодействии Cs[Ag[B₁₂H₁₂]] с конкурентоспособными органическими лигандами Ph₃P и L в смеси DMF/CH₃CN/C₆H₆ селективно были выделены биядерные смешаннолигандные комплексы общей формулы [Ag₂(Ph₃P)₂(L)₂(µ-B₁₂H₁₂)] ·nsolv.

Методом РСА определено строение комплексов $[Ag_2[\mu-B_{12}H_{12}](bipy)_2(Ph_3P)_2] \cdot 0.5CH_3CN$ (22), $[Ag_2[\mu-B_{12}H_{12}](bpa)_2(Ph_3P)_2]$ (23), $[Ag_2[\mu-B_{12}H_{12}](phen)_2(Ph_3P)_2]$ (24). Кристалл комплекса (23) построен из центросимметричных биядерных комплексов $[(bpa)(PPh_3)Ag[\mu-B_{12}H_{12}]Ag(bpa)(PPh_3)]$. Атомы N(1) и N(2) молекулы *bpa* и атом P(1) молекулы PPh_3 образуют сильные связи с атомом Ag(1) (Ag(1)-N 2,356(2) и 2,369(3) Å; Ag(1)-P(1) 2,3963(7) Å). Комплексы с *bipy* и *phen* изоструктурны комплексу $[Ag_2(Ph_3P)_2(bpa)_2[B_{12}H_{12}]]$.

3.2.2.3. Влияние природы исходных реагентов

При взаимодействии додекабората трибутиламмония с предварительно полученным комплексом $\{[Ag(bipy)_2]NO_3\}_n$ в системе CH₃CN/DMF независимо от соотношения компонентов из реакционного раствора селективно был выделен тетраядерный комплекс $[Ag_4[\mu-B_{12}H_{12}]_2(bipy)_4]$ (21).

Следует отметить, что проведение аналогичной реакции в присутствии исходных комплексов $\{[Ag(\mu-NO_3)(bpa)_4]\}_n$ или $[Ag(phen)_2]NO_3$ привело к образованию полимерных комплексов $[Ag_2[\mu-B_{12}H_{12}](bpa)_2]_n$ (18) и $[Ag_2[\mu-B_{12}H_{12}](phen)_2]_n$ ·DMF (19) соответственно.

Структура комплекса (21) построена из двух центросимметричных биядерных комплексов [(*bipy*)Ag[μ -B₁₂H₁₂]Ag(*bipy*)], связанных между собой связью Ag-Ag (Puc.13). Атом Ag(1) координирует атомы азота N(1) и N(2) хелатирующего лиганда *bipy* и группу B(1)-H(1) *клозо*-додекаборатного аниона. Расстояния Ag(1)-N равны 2.268(8) и 2.314(9) Å. Расстояние Ag-Ag 3.274 Å. В комплексе между противоположными молекулами *bipy* наблюдаются стекинг-взаимодействия с межплоскостными расстояниями ~3,5 Å. Стекинг-взаимодействия комплексами с межплоскостным расстоянием ~3,76 Å образуют диагональную упаковку слоев в кристалле.

Рисунок 13. Строение тетраядерного комплекса [Ag₄[µ-B₁₂H₁₂]₂(*bipy*)₄] (21)

выводы

1. Проведено систематическое исследование и изучена реакционная способность додекагидро-*клозо*-додекаборатного аниона в реакциях комплексообразования металлов мягких-кислот по Пирсону (M = Cu(I), Ag(I)) в присутствии азагетероциклических лигандов L (L = bpa, *bipy*, *phen*).

2. Разработаны оригинальные методики и показана возможность синтеза моно- и полиядерных координационных соединений Cu(II) с анионом [B₁₂H₁₂]²⁻ и лигандами L в условиях OBP. Установлено, что в зависимости от источника меди, природы азагетероциклического лиганда L и растворителя образуются комплексные соединения Cu(II) различного состава и строения.

3. Установлены условия формирования гетеровалентных комплексов Cu(I/II) и комплексов Cu(I) с анионом [B₁₂H₁₂]²⁻ и L в присутствии редокс-активных реагентов.

4. Разработаны оригинальные методики и определены условия образования би- и полиядерных комплексов Ag(I) с анионом $[B_{12}H_{12}]^{2-}$ и лигандами L. Установлено, что в присутствии реакционноспособных терминальных лигандов или молекул растворителя образуются преимущественно биядерные комплексы Ag(I) с анионом $[B_{12}H_{12}]^{2-}$ в качестве мостикового лиганда.

5. Впервые синтезирован и охарактеризован тетраядерный комплекс Ag(I) состава [Ag4[µ-B₁₂H₁₂]₂(*bipy*)₄]; методами ИК, КР спектроскопии и РСА охарактеризовано наличие трехцентровых двухэлектронных связей (МНВ) и связей Ag-Ag в комплексе.

6. Методом РСА определено строение 25 новых соединений. Установлено, что в зависимости от природы металла-комплексообразователя в присутствии аниона [B₁₂H₁₂]²⁻ образуются внутри- или внешнесферные координационные соединения. В комплексах

обнаружены и обсуждаются трехцентровые двухэлектронные связи (МНВ), связи М-М и специфические взаимодействия различной природы.

7.Для моно-, би- и трехядерных комплексов Cu(II): $[Cu_2(phen)_2Cl_2]_2[B_{12}H_{12}]\cdot 2CH_2I_2$, $[Cu_2(\mu-CO_3)(L)_4][B_{12}H_{12}]$, (L= bipy, phen), $[Cu_3(bipy)_6(\mu_3-CO_3)][B_{12}H_{12}]_2\cdot 4,5DMF\cdot 2H_2O$ изучены ЭПР спектры, определена магнитная восприимчивость и обсуждаются обменные процессы в кластерах.

Основные результаты диссертации представлены в работах:

1. Kochneva, I. K. Mixed-ligand polymeric and binuclear silver(I) complexes with the dodecahydro-closo-dodecaborate anion and bipyridylamine / I. K. Kochneva, V. V. Avdeeva, I. N. Polyakova, E. A. Malinina // *Polyhedron* – 2016. – V. 109 – P. 19.

2. Kochneva, I. K. New Coordination Polymers of Silver(I) Based on Dodecahydro-closo-Dodecaborate Anion: Synthesis and Structure / I. K. Kochneva, I. N. Polyakova, L. V. Goeva, V. V. Avdeeva, E. A. Malinina, and Academician N. T. Kuznetsov // *Dokl. Chem.* – 2017. – V. 475 – No. 2 – P. 164.

3. Kochneva, I. K. New Binuclear Copper(II) Complexes $[Cu_2(L)_4(\mu-CO_3)][B_{12}H_{12}]$ (L = bipy, phen): Synthesis, Structure, and Magnetic Properties / I. K. Kochneva, I. N. Polyakova, V. V. Avdeeva, N. N. Efimov, E. A. Ugolkova, V. V. Minin, E. A. Malinina, and Academician N. T. Kuznetsov // *Dokl. Chem.* – 2017 – V. 474 – No. 2 – P. 137.

4. Skachkova, V. K. Composites based on triethylammonium dodecahydro-*closo*-Dodecaborate ((Et_3NH)₂[B₁₂H₁₂]) and sodium silicate water glass / V. K. Skachkova, L. V. Goeva, A. V. Grachev, <u>I. K. Kochneva</u>, E. A. Malinina, A. Yu. Shaulov, A. A. Berlin, N. T. Kuznetsov // *Inorg. Materials* – 2017. – V. 53 – No. 2 – p. 207.

5. Кочнева, И. К. Химические превращения в системах $Cu^{I}(Cu^{II})/L/[B_{12}H_{12}]^{2-/solv}$ (L = bipy, phen; solv = CH₃CN, DMF, CH₂I₂) // И. К. Кочнева, В. В. Авдеева, Л. В. Гоева, Е. А. Малинина, Н. Т. Кузнецов // ЖНХ – 2018. – Т.63 – No 5 – С. 1

6. **Malinina, E. A.** Redox processes in the Cu/(phen)/ $[B_{12}H_{12}]^2$ /solv system: Selective preparation of copper(I), copper(II), and heterovalent copper(I/II) compounds / E. A. Malinina, <u>I. K. Kochneva</u>, I. N. Polyakova, V. V. Avdeeva, L. V. Goeva, V. V. Minin, E. A. Ugolkova, N. T. Kuznetsov // *Inorg. Chim. Acta*- 2018. - 477 - P. 284

7. **Malinina, E. A.** Structure and magnetic properties of trinuclear copper(II) complex $[Cu_3(bipy)_6(\mu_3-CO_3)[B_{12}H_{12}]_2\cdot4,5DMF\cdot2H_2O / E. A. Malinina, <u>I. K. Kochneva</u>, V. V. Avdeeva, G. A. Buzanov, N. N. Efimov, E. A. Ugolcova, V. V. Minin, N. T. Kuznetsov //$ *Inorg. Chim. Acta*-2018. – 479 – P.249.

8. Кочнева И. К. Особенности координации СО₃²⁻ – группы в полиядерных комплексах меди(II) с азагетероциклическими лигандами L (L = bipy, phen) и анионами [BnHn]2-: синтез, строение, магнитные свойства / И. К. Кочнева, А.Э. Дзиова, И. Н. Полякова, Е. А. Малинина, Н. Т. Кузнецов // V конференция молодых ученых по общей и неорганической химии, тезисы докладов, 2015, Москва.

9. Кочнева И.К. Координационные соединения серебра(I) с анионом [B₁₂H₁₂]²⁻ и азагетероциклическими лигандами L (L = BIPY, PHEN, BPA): синтез и особенности строения» / И. К. Кочнева, И. Н. Полякова, Л. В. Гоева, Е. А. Малинина, Н. Т. Кузнецов // VI конференция молодых ученых по общей и неорганической химии, тезисы докладов, 2016, Москва.

10. Kochneva I. K. Chemistry of the decachloro-closo-decaborate anion» / I. Kochneva, V. Avdeeva, E. Kravchenko, A. Vologzhanina, N. Kuznetsov // 7th European Conference on Boron Chemistry, Book of Abstracts, 2016, Moscow-Suzdal

11. Goeva L. V. Identification of the MHB multicenter bonds and direct M-M bonds in silver(I) complexes with the $[B_{12}H_{12}]^{2-}$ anion using spectral analytical methods» / Goeva, L.V., <u>Kochneva I. K.</u>, Avdeeva V. V., Malinina E. A., Kuznetsov N. T. // XX Mendeleev Congress on general and applied chemistry, abstract book in 5 volumes, volume 2a, 2016, Ekaterinburg

12. Kochneva I. K. Silver and copper(II) polynuclear complexes with $[B_{12}H_{12}]^{2-}$ and ligands L (L = BIPY, PHEN): redox complexation and competiton of complexing / I. K. Kochneva, I. N. Polyakova, E. A. Malinina, N. T. Kuznetsov // XX Mendeleev Congress on general and applied chemistry, abstract book in 5 volumes, volume 2a, 2016, Ekaterinburg

13. Kochneva I. K. Silver complexes with $[B_{12}H_{12}]^{2-}$ and ligands L (L = BIPY, PHEN, BPA): synthesis, structure and properties / I. K. Kochneva, I. N. Polyakova, L. V. Goeva, E. A. Malinina, N. T. Kuznetsov // X Международная конференция молодых ученых по химии «МЕНДЕЕВ-2017. Сборник тезисов докладов. 2017г, Санкт-Петербург

14. **Bunova D. V.** Copper (I), (I,II), (II) complexes with $[B_{12}H_{12}]^{2-}$ and phen: synthesis, structure and properties / D. V. Bunova, <u>I. K. Kochneva</u>, V. V. Avdeeva, I. N. Polyakova, L. V. Goeva, E. A. Malinina, N. T. Kuznetsov // X Международная конференция молодых ученых по химии «МЕНДЕЕВ-2017. Сборник тезисов докладов. 2017г, Санкт-Петербург

15. Кочнева И. К. Исследование окислительно-восстановительных взаимодействий в реакциях комплексообразования Cu с азагетероциклическими лигандами L (L= bipy, bpa, phen), в присутствии аниона [B₁₂H₁₂]²⁻ / И. К. Кочнева, И. Н. Полякова, Л. В. Гоева, Е. А. Малинина, Н. Т. Кузнецов // VII конференция молодых ученых по общей и неорганической химии, тезисы докладов, 2017, Москва.

16. Кочнева И. К. Взаимодействие додекагидро-клозо-додекаборатного аниона с металлами мягкими кислотами по Пирсону (Cu⁺, Ag⁺) в присутствии азагетероциклических лигандов L (L = Bipy, Phen, Bpa) / И. К. Кочнева, Е. А. Малинина, И. Н. Полякова, Л. В. Гоева, Н. Т. Кузнецов // V International Conference " Chemistry and Chemical Technology", conference proceedings, 2017, Yerevan.