На правах рукописи

fun

Симоненко Елизавета Петровна

НОВЫЕ ПОДХОДЫ К СИНТЕЗУ ТУГОПЛАВКИХ НАНОКРИСТАЛЛИЧЕСКИХ КАРБИДОВ И ОКСИДОВ И ПОЛУЧЕНИЮ УЛЬТРАВЫСОКОТЕМПЕРАТУРНЫХ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ДИБОРИДА ГАФНИЯ

02.00.01 - неорганическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени доктора химических наук

Москва – 2016

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)

 Научный консультант:
 Севастьянов Владимир Георгиевич доктор химических наук, профессор, член-корреспондент РАН, главный научный сотрудник Федерального государственного бюджетного учреждения науки Института общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Официальные оппоненты: Алымов Михаил Иванович,

доктор технических наук, профессор, член-корреспондент РАН, директор Федерального государственного бюджетного учреждения науки Института структурной макрокинетики и проблем материаловедения Российской академии наук

Бурханов Геннадий Сергеевич,

доктор технических наук, профессор,

член-корреспондент РАН, заведующий лабораторией Федерального государственного бюджетного учреждения науки Института металлургии и материаловедения им. А.А. Байкова Российской академии наук

Агафонов Александр Викторович,

доктор химических наук, профессор, заведующий лабораторией Федерального государственного бюджетного учреждения науки Института химии растворов им. Г.А. Крестова Российской академии наук

Ведущая организация: Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН).

Защита состоится **«14»** декабря 2016 г. в 11 часов на заседании диссертационного совета Д 002.021.01 при Федеральном государственном бюджетном учреждении науки Институте общей и неорганической химии им. Н.С. Курнакова РАН (ИОНХ РАН) по адресу: 119991, Москва, Ленинский проспект, 31.

С диссертацией и авторефератом можно ознакомиться в библиотеке ИОНХ РАН и на сайте: www.igic.ras.ru

Автореферат разослан «08» сентября 2016 г.

Ученый секретарь диссертационного совета кандидат химических наук

____А.Ю. Быков

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования и степень ее разработанности. В настоящее время развитие авиакосмической отрасли и техники специального назначения выявило чрезвычайно острую проблему отсутствия материалов, работоспособных при аэродинамическом нагреве высокоскоростными потоками превышающих 2000÷2500°C. Это температур, воздуха ДО связано С необходимостью повышения скорости, маневренности, подъемной силы И аэродинамического сопротивления перспективных снижения летательных аппаратов, которые должны иметь радиус кривизны кромок крыльев и острых носовых частей не единицы и десятки сантиметров, как это характерно для действующих на сегодняшний день изделий, а десятые доли миллиметров, что вызывает нагрев деталей вблизи точек или линий полного торможения потока до температур 2000÷2700°С. При этом традиционные высокотемпературные материалы на основе C_f/C-, C_f/SiC- и C_f/C-SiC-композитов не выдерживают столь жесткого воздействия.

Известно, что основными компонентами ультравысокотемпературных керамических материалов (UHTC – ultra-high-temperature ceramic) для применения при высокоскоростном аэродинамическом нагреве в деталях с острыми кромками являются бориды металлов, прежде всего, дибориды циркония и гафния, которые помимо своих высоких температур плавления (3000÷3250°С) и достаточно керамических материалов механических свойств обладают хороших ДЛЯ повышенной теплопроводностью при температурах до 2000÷3000°C, что позволяет отводить тепло от перегретых кромок. Основным недостатком таких материалов является низкая окислительная стабильность в кислородсодержащих средах, что в мировом научно-техническом сообществе нивелируется за счет введения в состав материалов компонентов, образующих при окислении с оксидом бора вязкие стекла, которые препятствуют диффузии кислорода в более глубокие слои материала. Прежде всего, это – карбид кремния, то есть состав материалов указанного выше назначения представляет собой преимущественно композиты ZrB₂/SiC и HfB₂/SiC.

Для улучшения свойств этих материалов (увеличения окислительной стабильности и трещиностойкости, оптимизации механических характеристик, предотвращения отслоения окисленной части материала под воздействием потока диссоциированного воздуха) предлагается введение в их состав других компонентов: ультратугоплавких карбидов TiC, ZrC, HfC, TaC, ZrC–TaC, HfC–TaC и тугоплавких оксидов, прежде всего, на основе оксидов циркония, гафния и РЗЭ.

Необходимо отметить, что ряд вышеназванных соединений или не производится на территории Российской Федерации, или существует производство крупнодисперсных порошков, поэтому создание научных основ технологии

карбидов тугоплавких оксидов как компонентов высоко-И И ультравысокотемпературных материалов И покрытий имеет И аспект импортозамещения.

Отдельной задачей является получение указанных компонентов, в первую очередь, карбида кремния, в высокодисперсном, нанокристаллическом состоянии, что позволит как сделать более энергоэффективными существующие технологии получения материалов за счет снижения температуры и времени спекания керамики, улучшить свойства получаемых материалов, так И создать принципиально новые технологии, например, в результате модифицирования порового пространства уже изготовленных материалов путем шликерного заполнения нанопорошками или *in situ* создания тугоплавких модифицирующих матриц с применением золь-гель техники.

Таким образом, разработки новых задача методов создания ультравысокотемпературных материалов на основе диборидов гафния или модифицированных карбидом с циркония, кремния, улучшенными характеристиками, новых подходов, позволяющих снизить температуры их изготовления с обычно применяющихся 2000÷2200°С до 1700÷1900°С, а также разработки методов синтеза высокодисперсных тугоплавких карбидов и оксидов металлов, перспективных для усовершенствования свойств материалов состава HfB_2/SiC стойкость (включая окислительную под воздействием высокоскоростного диссоциированного воздуха) потока путем высокотехнологичного В состав данных модифицирующих введения ИХ компонентов, является чрезвычайно актуальной.

Целью данной работы являлась разработка научных основ синтеза высокодисперсных тугоплавких карбидов и оксидов металлов как компонентов перспективных ультравысокотемпературных материалов на основе диборидов гафния и циркония, модифицированных карбидом кремния, апробация новых подходов к созданию материалов данного типа, изучение поведения полученных ультравысокотемпературных керамических материалов в том числе и под воздействием высокоэнтальпийных потоков воздуха.

Учитывая комплексный характер работы, сочетающей необходимость осуществления неорганического синтеза и задействования подходов коллоидной химии, высокотемпературного синтеза, в том числе при пониженном давлении, разработку методик изготовления ультравысокотемпературных материалов (горячее прессование, искровое плазменное спекание) и их испытания в условиях, моделирующих аэродинамический нагрев высокоэнтальпийными потоками воздуха, для решения основной фундаментальной проблемы, над которой в настоящее время работают коллективы практически из всех регионов мира, необходимо выделить ряд конкретных объемных, взаимосвязанных и трудозатратных задач:

1) Изготовление на основе коммерчески доступных порошков методом искрового плазменного спекания модельных ультравысокотемпературных керамических материалов состава HfB₂/SiC, содержащих от 10 до 45 об. % карбида кремния, обладающих достаточно высокой пористостью (до 40 %). Изучение их поведения под воздействием потока диссоциированного воздуха при температурах поверхности до 2700° C с использованием индукционного плазмотрона. Выявление особенностей процесса их окисления для целенаправленного поиска путей улучшения характеристик.

2) Развитие методов синтеза нанокристаллического карбида кремния как необходимого компонента ультравысокотемпературных керамических композиционных материалов, прежде всего, с применением золь-гель технологией.

3) Разработка методов синтеза сверхтугоплавких нанокристаллических индивидуальных (TiC, ZrC, HfC и TaC) и сложных карбидов (Ta₄ZrC₅ и Ta₄HfC₅) при относительно низких температурах (≤1500°C) как перспективных компонентов ультравысокотемпературных материалов.

4) Развитие методов синтеза высокодисперсных оксидов металлов, введение которых в состав ультравысокотемпературных материалов может модифицировать образующийся значительно под воздействием высокоэнтальпийных потоков воздуха защитный стекловидный слой и снизить скорость окисления объемной части материала, a также способствовать стабилизации в тетрагональной модификации образующегося диоксида гафния или циркония, предотвращая разрушение окисленной области и существенное изменение геометрии детали.

Разработка 5) методов изготовления ультравысокотемпературных керамических материалов состава HfB₂/SiC с нанокристаллической фазой карбида кремния, позволяющих снизить температуру получения изделий до 1700÷1900°С, но обеспечивающих достижение плотности до 90÷95% от теоретической, в результате *in situ* карботермического синтеза SiC непосредственно в ходе горячего прессования или искрового плазменного спекания системы HfB₂/(SiO₂-C). При этом высокодисперсный химически активный состав SiO₂-C наносится на микродисперсный порошок HfB_2 путем гидролиза тетраэтоксисилана В присутствии полимерного источника углерода с применением золь-гель метода, обеспечивающего максимальную равномерность распределения кремний- и углеродсодержащих компонентов и наибольшую однородность получаемых материалов.

Научная новизна работы состоит в:

1) Создании новых энергоэффективных способов изготовления ультравысокотемпературных керамических композиционных материалов состава HfB₂/SiC, объединяющих карботермического стадии синтеза нанокристаллического карбида кремния и горячего прессования керамики, что в контексте формирования композитов с равномерным распределением компонентов позволяет избежать дополнительных стадий получения высокодисперсного порошка SiC, смешения и совместного помола порошков HfB_2 и SiC; определении зависимости структуры и термического поведения в токе воздуха при нагреве до 1400°С от пористости и содержания карбида кремния (10÷65 об. %).

2) Выявлении особенностей поведения модельных материалов HfB₂/SiC (10÷45 об. %) с пористостью 20÷39 % при длительном (40÷42 мин) высокоэнтальпийном воздействии потока воздуха, в том числе при температуре поверхности 2500÷2700°C.

3) Получении новых данных о влиянии пористости и соотношения $HfB_2:SiC$ (содержание SiC от 10 до 65 об. %) на структуру и термическое поведение при нагреве до 1400°C в токе воздуха керамических композиционных материалов HfB_2/SiC , изготовленных с применением золь-гель метода и горячего прессования композиционных порошков $HfB_2/(SiO_2-C)$.

4) Разработке новых подходов к синтезу нанокристаллических карбидов (SiC, TiC, ZrC, HfC, TaC, Ta₄ZrC₅ и Ta₄HfC₅) при относительно низких температурах (≤1500°С) через золь-гель стадию получения высокодисперсных и химически активных стартовых составов MO_x-C, где M – Si, Ti, Zr, Hf, Ta.

5) Разработке метода получения окислительно стойкого композиционного порошка HfB₂/SiC, где карбид кремния является нанокристаллическим и наносится на поверхность микродисперсного порошка HfB₂ с применением золь-гель метода.

6) Разработке новых методик синтеза высокодисперсных тугоплавких оксидов металлов – иттрий-алюминиевого граната ($Y_3Al_5O_{12}$), стабилизированного диоксида циркония (8 мол. % $Y_2O_3 - 92$ мол. % ZrO₂), оксида циркония-гафния-иттрия (15 мол. % $Y_2O_3 - 60$ мол. % ZrO₂ – 25 мол. % HfO₂), соединений со структурой пирохлора (Nd₂Hf₂O₇ и Gd₂Hf₂O₇); определении для трех последних составов особенностей парообразования при температурах выше 2000°С.

7) Разработке методов получения тонких наноструктурированных пленок состава Y₃Al₅O₁₂, 8 мол. % Y₂O₃ – 92 мол. % ZrO₂ и 15 мол. % Y₂O₃ – 60 мол. % ZrO₂ – 25 мол. % HfO₂, перспективных для модифицирования порошков карбидов и боридов металлов, и для создания тугоплавких оксидных матриц высокотемпературных композиционных материалов заданного состава.

8) Создании нового метода получения пористой SiC-керамики, включающего карботермический синтез непосредственно в ходе изготовления материала при искровом плазменном спекании или горячем прессовании высокодисперсного химически активного состава SiO₂–C, полученного золь-гель методом.

9) Разработке нового метода изготовления пористой карбидокремниевой керамики с применением полимерной технологии на основе природного сырья – диатомитового порошка, позволяющего получать изделия сложной формы и варьировать значение пористости.

Практическая значимость работы определяется потребностями современной промышленности в компонентной базе ультравысокотемпературных материалов – высокодисперсных и химически чистых порошках тугоплавких карбидов и оксидов, а также авиационной и ракетно-космической отрасли в материалах, работоспособных при температурах 2000°С и выше под длительным воздействием потока диссоциированного воздуха. Разработанные методики получения наноструктурированных порошков могут быть масштабированы и внедрены в производство.

Теоретическую значимость имеют выявленные зависимости реакционной способности прекурсоров класса алкоксоацетилацетонатов металлов при взаимодействии с водой (с образованием связнодисперсных систем) от соотношения лигандов в их координационной сфере.

Полученные данные по процессам парообразования оксидов $Y_3Al_5O_{12}$, 15 мол. % $Y_2O_3 - 60$ мол. % $ZrO_2 - 25$ мол. % HfO_2 , $Nd_2Hf_2O_7$ и $Gd_2Hf_2O_7$ с массспектрометрическим анализом газовой фазы могут быть использованы для прогнозирования высокотемпературного поведения композиционных материалов и термобарьерных покрытий с их участием.

Методология и методы исследования

При синтезе прекурсоров использовались методы неорганической и координационной химии. Для их идентификации применялись элементный С,Н,N,S-анализ (ЦКП ИОНХ РАН), УФ- и ИК-спектроскопия. Процесс гидролиза прекурсоров с последующей поликонденсацией и образованием связнодисперсных систем изучался с использованием ротационной вискозиметрии. Синтез нанокристаллических карбидов и оксидов осуществлялся с использованием, преимущественно, золь-гель технологии, гликоль-цитратного метода И карботермического восстановления в условиях динамического вакуума или инертной атмосферы. Получение наноструктурированных пленок заданного состава проводилось методом dip-coating. Термическое поведение реагентов, ксерогелей. получаемых нанопорошков И материалов исследовалось С применением совмещенного ДСК/ТГА/ДТА в интервале от 20 до 1500°С в токе

воздуха или аргона. Фазовый состав порошков, пленок и объемных материалов исследовался с применением рентгенофазового анализа (преимущественно, ЦКП ИОНХ РАН). Микроструктура продуктов изучалась с применением атомносиловой, сканирующей (преимущественно, ЦКП ИОНХ РАН) и просвечивающей электронной микроскопии (АО «НИИЭИ», МГУ им. М.В. Ломоносова). Удельная площадь поверхности и распределение пор по размерам определялись по данным низкотемпературной сорбции азота и ртутной порометрии (Институт химии ДВО РАН, Дальневосточный федеральный университет). Гидродинамические диаметры частиц в суспензиях определялись с применением метода динамического рассеяния света (ИБХ РАН). Изучение мезоструктуры, размеров кристаллитов и фрактальной размерности для ряда объектов выполнено с применением малоуглового и (МУРН ультрамалоуглового рассеяния нейтронов И УМУРН), a также рассеяния рентгеновского излучения (МУРР). Изготовление малоуглового керамических материалов проводилось с использованием методик горячего прессования и искрового плазменного спекания (Институт химии ДВО РАН, Дальневосточный федеральный университет), а также с применением полимерной технологии (совместно с МТУ). Изучение объемной микроструктуры материалов осуществлялось с применением рентгеновской компьютерной микротомографии (МГУ им. М.В. Ломоносова). Исследование поведения образцов под воздействием потока диссоциированного воздуха выполнено на высокочастотном индукционном плазмотроне ВГУ-4 (ИПМех РАН), при этом состав газовой фазы пограничного слоя над образцом изучался с использованием эмиссионной спектроскопии.

Положения, выносимые на защиту:

1) Новые методы получения нанокристаллических карбидов (карбида кремния, сверхтугоплавких карбидов TaC, TiC, ZrC, HfC и сложных карбидов тантала-циркония Ta₄ZrC₅ и тантала-гафния Ta₄HfC₅) при относительно низких температурах (\leq 1500°C) через золь-гель стадию получения высокодисперсных и химически активных составов MO_x–C, где M – Si, Ti, Zr, Hf, Ta, позволяющие получать высокодисперсные порошки, тонкие пленки и тугоплавкие матрицы композиционных керамоматричных материалов заданного состава.

2) Новый метод изготовления ультравысокотемпературных керамических композиционных материалов состава HfB_2/SiC , объединяющий стадии карботермического синтеза нанокристаллического карбида кремния и горячего прессования керамики, позволяющий понизить температуры спекания до $1700 \div 1900^{\circ}C$, избежать дополнительных стадий получения высокодисперсного порошка SiC, смешения и совместного помола с порошком HfB_2 , повысить однородность соответствующих материалов.

3) Новый метод получения пористой SiC-керамики, включающий карботермических синтез непосредственно в ходе изготовления материала при

искровом плазменном спекании или горячем прессовании высокодисперсного химически активного состава SiO₂–C, полученного золь-гель методом.

4) Новые методики синтеза высокодисперсных тугоплавких оксидов металлов – иттрий-алюминиевого граната ($Y_3Al_5O_{12}$), стабилизированных оксидов циркония (8 мол. % $Y_2O_3 - 92$ мол. % ZrO_2) и циркония-гафния (15 мол. % $Y_2O_3 - 60$ мол. % $ZrO_2 - 25$ мол. % HfO_2), соединений со структурой пирохлора ($Nd_2Hf_2O_7$ и $Gd_2Hf_2O_7$). Данные об особенностях парообразования $Y_3Al_5O_{12}$, $Nd_2Hf_2O_7$, $Gd_2Hf_2O_7$ и 15 мол. % $Y_2O_3 - 60$ мол. % $ZrO_2 - 25$ мол. % $Y_2O_3 - 60$ мол. % $ZrO_2 - 25$ мол. % HfO_2 при температурах выше 2000°С.

5) Результаты исследования поведения и деградации под воздействием потока диссоциированного воздуха керамических композиционных материалов HfB_2/SiC (содержание SiC от 10 до 45 об. %), изготовленных методом искрового плазменного спекания на основе коммерчески доступных порошков HfB_2 и SiC.

6) Данные об изменении состава, окислительной стойкости и микроструктуры композиционных порошков HfB_2/SiC (где карбид кремния является нанокристаллическим и наносится на микродисперсный порошок HfB_2 с применением золь-гель метода) в зависимости от соотношения компонентов и условий получения.

Личный вклад автора. Лично автором проведен обзор литературных источников по тематике диссертации, поставлены цели и задачи работы, сформулированы подходы к решению конкретных проблем, разработаны экспериментальные методики, осуществлены эксперименты по синтезу высокодисперсных оксидов и карбидов, а также выполнен анализ данных физикохимических методов исследований, совместно с консультантом чл.-корр. РАН В.Г. Севастьяновым проведено обобщение результатов и сформулированы выводы. Термодинамическое моделирование процессов синтеза карбидов выполнено совместно с д.х.н. Ю.С. Ежовым (ОИВТ РАН). Часть экспериментальных работ по синтезу сверхтугоплавких карбидов и оксидов металлов под руководством автора проведена аспирантами Н.А. Игнатовым, Н.П. Симоненко, А.В. Дербеневым, B.A. Сахаровым, А.С. Николаевым, K.A. Мокрушиным И студентом Ф.Ю. Горобцовым. Часть рентгенограмм записана к.х.н. Ю.А. Великодным (МГУ). Термический анализ и получение изображений сканирующей электронной микроскопии выполнены к.х.н. Н.П. Симоненко. Изображения просвечивающей электронной микроскопии получены при содействии к.т.н. В.И. Перепеченых (АО «НИИЭИ»). Исследование мезоструктуры нанопорошков методами МУРН, УМУРН и МУРР проведено Г.П. Копицей (ПИЯФ НИЦ «КИ»). Раман-спектры записаны М. Хаддажем (РУДН, ИОНХ РАН). Разработка методов получения карбидокремниевой матрицы композиционных материалов проводилась совместно с ФГУП «ВИАМ», научной группой под руководством акад. Е.Н. Каблова и

к.т.н. Д.В. Гращенкова. Исследование особенностей парообразования некоторых оксидных систем при температурах ≥2000°С осуществлено чл.-корр. РАН В.Л. Столяровой и С.И. Лопатиным (СПбГУ). Применение полимерной технологии для получения пористой карбидокремниевой керамики проведено совместно с д.т.н. И.Д. Симоновым-Емельяновым и к.т.н. Н.Л. Шембель. Эксперименты по изготовлению керамических материалов методом искрового плазменного спекания проведены совместно с чл.-корр. РАН В.А. Авраменко, к.х.н. Е.К. Папыновым и студентом 0.0. Шичалиным. Эксперименты по воздействию на ультравысокотемпературные образцы потока диссоциированного воздуха выполнены д.ф.-м.н. А.Ф. Колесниковым и к.ф.-м.н. А.Н. Гордеевым.

Степень достоверности и апробация результатов работы. Использование в работе широкого ряда современных методов исследования, данные которых не противоречат обсуждение результатов на Всероссийских друг другу, И международных научных конференциях позволяет судить о высокой степени их достоверности. Основные результаты работы представлены на 10th International Conference on Silicon Carbide and Related Materials- 2003, ICSCRM 2003 (2003, Lyon, France), High Temperature Ceramic Matrix Composites 5: Proceedings on the 5th International Conference on High Temperature Ceramic Matrix Composites, HTCMC-5 Seattle. Washington, USA), Международной школе-конференции (2004.SPACE'2006: «Космический вызов XXI века. Новые материалы и технологии для ракетно-космической техники» (2006, Украина, Севастополь), II, III и IV научно-технических конференциях «Наукоемкие химические Молодежных технологии» (2007, 2009, 2011, Москва), XX, XXI и XXII Всероссийских совещаниях по температуроустойчивым функциональным покрытиям (2007, 2010, 2012, Санкт-Петербург), International Conference on Organometallic and Coordination Chemistry (2008, N. Novgorod, Russia), XXIV Международной Чугаевской конференции по координационной химии и молодежной конференции-школе «Физико-химические методы в химии координационных соединений – от молекул до наноматериалов» (2009, Санкт-Петербург), 14th European Conference on Composite Materials ECCM 14 (2010, Budapest, Hungary), IX Международном Курнаковском совещании по физико-химическому анализу (2010, Пермь), 7th International Conference on High Temperature Ceramic Matrix Composites, HT-CMC 7 (2010, Bayreuth, Germany), Первой Всероссийской Конференции «Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов и дисперсных систем, «Золь-гель-2010» (2010, Санкт-Петербург), I-VI Конференциях молодых ученых по общей и неорганической химии (2011-2016, Москва), XIX Менделеевском съезде по общей и прикладной химии (2011, Волгоград), Международной научно-технической конференции "Новые материалы и технологии глубокой переработки сырья – основа инновационного развития

экономики России" (2012, Москва), 15th Scientific Youth School "Physics and technology of micro- and nanosystem. Silicon Carbide and Related Materials" (2012, Saint-Petersburg), Второй конференции стран СНГ «Золь-гель синтез И исследование неорганических соединений, гибридных функциональных материалов и дисперсных систем «Золь-гель-2012» (2012, Севастополь, Украина), VII и VIII Всероссийских школах-конференциях молодых ученых "Теоретическая и экспериментальная химия жидкофазных систем" (Крестовские Чтения) (2012, 2013, Иваново), І и ІІ Всероссийских научных конференциях «Практическая микротомография» (2012, 2013, Казань), XLVII и XLVIII Школах ФГБУ «ПИЯФ» по физике конденсированного состояния ФКС-2013 и ФКС-2014 (2013, 2014, Санкт-Петербург), Конференции «Современные высокотемпературные композиционные материалы и покрытия» (2013, Москва), XIX International Chemical Thermodynamic in Conference on Russia (2013, Moscow), Х Международном Курнаковском Совещании по физико-химическому анализу (2013, Самара), The 19th International Conference on Composite Materials (2013, Montreal, Canada), XVII International Sol-Gel Conference (2013, Madrid, Spain), VIII Международной научной конференции «Кинетика и механизм кристаллизации. Кристаллизация как форма самоорганизации вещества» (2014, Иваново), Третьей международной конференции стран СНГ «Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов И дисперсных систем «Золь-гель 2014» (2014, Суздаль), V Международной Конференции с элементами научной школы для молодежи «Функциональные наноматериалы и высокочистые вещества» (2014, Суздаль), Конференции «Высокотемпературные керамические композиционные материалы и защитные покрытия» (2014, Москва), 7-ой Международной конференции «Космический вызов XXI века. Новые материалы, технологии и приборы для космической техники. SPACE`2015» (2015, Севастополь, Россия), Всероссийской молодёжной конференции c международным участием "Химическая технология функциональных наноматериалов" (2015, Москва), Конференции «Современные достижения в области создания перспективных неметаллических композиционных материалов и покрытий для авиационной и космической техники» (2015, Москва) и других научных мероприятиях.

Работа выполнена при финансовой поддержке грантов Российского фонда фундаментальных исследований, Президента Российской Федерации, Президиума и Отделения Химии и Наук о Материалах Российской академии наук.

Работа удостоена Премии Президента РФ для молодых ученых в области науки и инноваций за 2010 г. за разработку конструкционных керамических композиционных материалов для перспективных двигательных установок и гиперзвуковых летательных аппаратов (в составе авторского коллектива). Публикации. По результатам исследования опубликовано 32 статьи в рецензируемых журналах из перечня, рекомендованного ВАК Российской Федерации, 11 патентов РФ на изобретение, 22 статьи в сборниках трудов научных мероприятий и 127 тезисов докладов. Два патента (№ 2339574 и 2350580) отмечены Роспатентом в номинации «100 лучших изобретений России» (2009 г.).

Структура и объём диссертации. Диссертация изложена на 550 страницах, содержит 286 рисунков и 45 таблиц. Работа состоит из введения, обзора литературы, методической главы, пяти экспериментальных глав, заключения и списка литературы (570 наименования).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** кратко обосновываются поставленная цель и актуальность работы, научная новизна и практическая значимость результатов, сформулированы выносимые на защиту положения.

Глава 1. В главе, посвященной обзору литературы по тематике, выделены острые проблемы в области создания ультравысокотемпературных керамических материалов состава HfB₂(ZrB₂)/SiC; рассмотрены некоторые аспекты теплообмена взаимодействия деталей острой условиях с передней кромкой В С высокоэнтальпийным высокоскоростным потоком воздуха, специфика которых дает возможность очертить характеристики материалов, которые позволяли бы обозначить их в качестве перспективных для использования в гиперзвуковых летательных аппаратах; проанализированы особенности окисления материалов на основе ZrB₂ и HfB₂, допированных SiC; показана перспективность введения в состав материалов HfB₂(ZrB₂)/SiC модифицирующих добавок – сверхтугоплавких карбидов и оксидов и показано, что наилучшие характеристики получены при использовании высокодисперсных нанокристаллических компонентов; рассмотрены методы получения композиционных порошков HfB₂(ZrB₂)/SiC; описаны методы синтеза высокодисперсных тугоплавких карбидов и оксидов.

Обосновано, что развитие научных основ создания ультравысокотемпературных керамических материалов связано с разработкой новых подходов к синтезу высокодисперсных тугоплавких бинарных соединений в качестве важнейших составляющих компонентной базы для UHTC и адаптацией разработанных методик для энергоэффективного получения материалов состава HfB₂/xSiC (x=10÷65 об. %), содержащих нанокристаллический карбид кремния.

<u>Глава 2.</u> В методической 2 главе перечислены использованные в работе реактивы и оборудование, кратко описаны методики испытания изготовленных образцов на высокочастотном индукционном плазмотроне ВГУ-4, методики определения парциального давления пара над образцами тугоплавких оксидов с применением метода Кнудсена, метода измерений МУРН и УМУРН.

<u>Глава 3.</u> В 3 главе рассмотрены особенности поведения модельных керамических образцов, получаемых с использованием коммерчески доступных порошков диборида гафния и карбида кремния, в высокоэнтальпийных потоках воздуха¹.

Модельные керамические образцы состава HfB₂/SiC с содержанием карбида кремния 10, 15, 20, 25, 35 и 45 об. % и расчетной пористостью 20-39 % получены методом искрового плазменного спекания (SPS) при температуре <1500°C и давлении 25,5 МПа. Изучены их элементный и фазовый состав, микроструктура поверхности и сколов.

Для данных образцов исследовано поведение в условиях нагрева под воздействием дозвукового потока диссоциированного воздуха (мощность анодного питания 45÷72 кВт, давление в барокамере плазмотрона 100÷200 гПа, энтальпия потока составляла 28,2÷35,3 МДж/кг (индукционный плазмотрон ВГУ-4, ИПМех РАН). Для этого образцы помещали в медную водоохлаждаемую модель, форма которой была идентична так называемой евромодели (ESA standard model – цилиндр с плоским торцом диаметром 50 мм и радиусом скругления кромки 11,5 мм). Образцы устанавливались в водоохлаждаемой медной модели с помощью жгутиков из ваты на основе нитевидных кристаллов SiC, что позволяло избежать касания образца и модели. Для уменьшения отвода тепла в модель образцы устанавливались с выступом относительно лицевой поверхности на 1,5 мм. Использовалось коническое сопло с диаметром 30 мм.

Рисунок 1 – Термоизображения поверхности образца HfB₂/SiC (10 об. %) в различные моменты испытания

Показано для всех образцов, что в результате термохимического воздействия на начальных этапах эксперимента поверхность образцов нагревается равномерно, а затем, по мере увеличения мощности анодного питания давления И барокамере плазмотрона на краю (чаще) или В областях микронеоднородностей (реже) образцов

¹ Совместно с ИПМех РАН и Институтом химии ДВО РАН

формируются участки, температура которых поднимается до 2500÷2750°С и которые в процессе воздействия увеличивают свою площадь, что приводит к резкому росту средней температуры поверхности образцов – рис. 1. Однако для ряда образцов в вплоть до завершения испытания на поверхности остаются участки, температура которых не превышает 1750÷1850°С.

Совокупные данные по изменению в ходе эксперимента температуры газовой фазы в пограничном поверхности, состава слое (эмиссионная фазового состава, а также микроструктуры спектроскопия), изучение И (CЭM, EDX) состава участков, температура элементного которых под воздействием потока диссоциированного воздуха не превышала 1750÷1850°С или составляла ~2500÷2700°С, позволяет утверждать, что на начальном этапе на поверхности в результате окисления HfB2 и SiC формируется защитный слой боросиликатного стекла (что резко снижает интенсивность испарения B₂O₃), а далее при достижении температуры поверхности значения >1850÷1950°С (при увеличении мощности анодного питания и давления в барокамере плазмотрона) происходит интенсивное испарение обоих компонентов системы B_2O_3 -SiO₂, в результате чего на поверхности обнажается пористый каркас на основе диоксида гафния – рис. 2.

Из-за низкой теплопроводности HfO_2 (особенно пористого) и его высокой каталитичности в процессах поверхностной рекомбинации атомарного кислорода и азота после испарения боросиликатного стекла на поверхности устанавливается температура ~2500÷2700°C, которая и стимулирует дальнейшее испарение стекла рядом со своими границами, увеличивая площадь таких высокотемпературных участков.

Рисунок 2 – Изменение состава и микроструктуры поверхности образцов HfB₂/SiC при длительном воздействии высокоэнтальпийных потоков воздуха

При этом, после стабилизации на поверхности температуры 2500÷2700°С в течение нескольких минут содержание в газовой фазе соединений кремния и бора падает до значений, которые отмечались на начальных этапах при температуре поверхности ~1550÷1750°С. Это возможно в случае, если температура в более глубоких слоях окисленной области материала, где локализуется боросиликатное стекло после испарения его с поверхности (по данным СЭМ шлифов), имеет вышеуказанное значение благодаря пониженной теплопроводности HfO₂-каркаса, играющего роль своеобразного термобарьерного покрытия – рис. 3. Таким образом, боросиликатное стекло продолжает выполнять свою защитную функцию, распределяясь в каналах и порах HfO₂, несмотря на установившуюся на поверхности температуру >2500°С, даже в течение длительного воздействия (40÷42 мин).

Рисунок 3 – Схема взаимного расположения слоев в окисленной области образцов HfB₂/SiC после длительного термохимического воздействия потока высокоэнтальпийного воздуха при температуре поверхности 2500÷2700°C

Изменение массы образцов HfB₂/SiC (10÷45 об. % SiC) за счет окисления (+ Δ m) и уноса потоком воздушной плазмы испарившихся продуктов (- Δ m) в течение 30÷42 мин составляло от -3,6 до +2,4 %, что зависит не только от состава UHTC, но и от параметров воздействия – температуры поверхности, длительности эксперимента и давления в барокамере плазмотрона.

Для образцов керамических материалов с повышенным содержанием карбида кремния (35 и 45 об. % SiC), не отмечалось снижения стойкости к термическому удару: не происходило растрескивания при охлаждении со скоростью 200÷500°/с, что может быть объяснено влиянием достаточно высокой пористости.

Выполненные исследования подтверждают перспективность полученных

материалов HfB₂/SiC (10÷45 об. % SiC), изготовленных с применением искрового плазменного спекания, для длительного (десятки минут) применения при сверхвысоких температурах на воздухе.

<u>Глава 4.</u> В 4 главе представлены результаты разработки методов получения нанокристаллического карбида кремния как важнейшего компонента UHTC и материалов на его основе.

Рисунок 4 – Схема гибридного метода синтеза наноразмерного карбида кремния Предложен метод синтеза нанокристаллического карбида кремния в виде порошка, тонких пленок, керамических материалов и модифицирующих матриц композиционных материалов с применением гибридного метода, включающего

1) контролируемый гидролиз тетраэтоксисилана в присутствии полимерного источника углерода (фенолформальдегидной смолы), 2) многоступенчатую сушку, 3) термическую обработку В атмосфере инертной или В условиях динамического вакуума, что позволяет получать химически активные стартовые системы SiO_2-C , В которых компоненты распределены максимально равномерно друг в друге, и 4) карботермический синтез при пониженном давлении и температурах ≤1500°С – рис. 4.

Экспериментально установлено, что при температуре карбонизации 800÷850°С карботермический синтез

нанокристаллического карбида кремния в условиях динамического вакуума начинается при температурах ≥1300°С, а при длительной выдержке – и при температуре 1200°С. Полное завершение процесса отмечалось при температурах 1400 и 1500°С. Показано, что осуществление синтеза SiC при наиболее жестких условиях (1500°С, 5 ч) приводит к образованию ажурного каркаса с объемными

порами (диаметром до 2÷4 мкм), который сформирован протяженными агрегатами при одновременном наличии ограненных частиц SiC диаметром 120÷250 нм. Отмечена перспективность описанной гибридной методики и для создания упрочняющей матрицы в объеме керамического карбидокремниевого материала². Так, при пропитке пористой карбидокремниевой керамики коллоидными системами, образующимися при инициировании гидролиза тетраэтоксисилана в присутствии полимерного источника углерода (фенолформальдегидной смолы), сушки, карбонизации и последующего карботермического восстановления при температуре 1570÷1600°C (выдержка – 3 ч, Ar) в образцах наблюдается смесь фаз α- и β-SiC.

Образующиеся нанодисперсные частицы карбида кремния с формой, близкой к сферической, наносятся на поверхность крупных ограненных частиц SiC, формирующих исходную керамику, в то же время в объеме пор происходит рост одномерных частиц, диаметр которых, преимущественно, <50 нм при длине $\sim 200 \div 400$ нм. Взаимное расположение этих агрегатов создает трехмерную каркасоподобную структуру (рис. 5) в порах между крупными частицами SiC. Однако встречаются и кристаллы диаметром 70÷150 нм и длиной >2÷3 мкм.

Рисунок 5 – Микроструктура полученного материала SiC/SiC (a) и SiCкаркаса (б), полученного при заполнении объема поры

Высокая реакционная способность и максимально равномерное взаимное распределение диоксида кремния и углерода в полученных золь-гель методом системах SiO₂–C позволили разработать метод, совмещающий карботермический синтез и изготовление пористой карбидокремниевой керамики в ходе искрового плазменного спекания составов SiO₂–C. При этом SPS проводилось в условиях динамического вакуума при умеренных температурах (1700, 1750 и 1800°C) и приложенном давлении 22,6, 23,8 и 25,5 МПа (время выдержки 35 мин).

² Совместно со ФГУП «ВИАМ»

Рентгенофазовый анализ показал, что для всех условий процесса образуется фаза карбида кремния (средний размер ОКР составил $48\div57$ нм) – рис. 6, небольшие примеси диоксида кремния встречались лишь в некоторых образцах, полученных при минимальной температуре (1700°С). В зависимости от условий прессования плотность полученных материалов варьировалась в интервале $1,43\div1,84$ г/см³, что соответствует уменьшению пористости от 55 до 42 %. При удалении специально введенного избыточного углерода путем прокаливания образцов на воздухе при 700°С (1 ч) отмечалось значительное снижение удельной площади поверхности и увеличение предела прочности при сжатии (94÷279 МПа в зависимости от условий синтеза).

Рисунок 6 – Рентгенограммы образцов SiC-керамики, полученных в ходе SPS высокодисперсной смеси SiO₂–C

Горячее прессование высокодисперсной системы SiO₂–C, полученной зольгель методом при температуре карбонизации 800÷850°C, проводилось в атмосфере инертного газа и при меньших температурах (1500÷1700°C) и времени выдержки (30 мин), чем в условиях SPS. Выявлено, что синтез нанокристаллического карбида кремния происходит уже при минимальных температурах (1500 и 1550°C), а полная конверсия SiO₂ в SiC происходит лишь при 1700°C. При этом размер кристаллитов увеличивается с 15 (1550°C) до 37 нм (1700°C). Плотность образца, полученного при максимальной температуре, составила 1,20 г/см³, расчетная пористость – 62 %, предел прочности при сжатии – 50 МПа, а удельная площадь поверхности по БЭТ составила >80 м²/г.

Поиск возможностей дополнительного снижения температуры карботермического синтеза SiC привел к необходимости выполнения цикла исследований, направленных на изучение перспектив увеличения реакционной

способности стартовых систем SiO₂–C путем осуществления процесса пиролиза органических фрагментов ксерогелей при более мягких условиях.

В рамках данных экспериментов показано, что в зависимости от температуры (400, 600, 800 и 1000°С) и длительности (1, 3 и 6 ч) термической обработки ксерогелей в условиях динамического вакуума значительно изменяются целевые свойства продуктов – составов SiO₂–С. Для систем, полученных при температурах 800 и 1000°С, наблюдается эффект капсулирования образующегося при пиролизе углерода диоксидом кремния, что снижает реакционную способность системы в процессе карботермического синтеза SiC – рис. 7. Выполнение же карбонизации при минимальных температурах 400 и 600°С дает возможность получения максимально реакционно способных систем SiO₂–С.

Рисунок 7 – Рентгенограммы продуктов SiO₂–C–SiC, полученных при нагреве в токе аргона до 1500°C систем SiO₂–C, синтезированных при различных температурах при выдержке в течение 6 ч

В качестве альтернативного метода получения высокопористой карбидокремниевой керамики показаны возможности полимерной технологии с использованием в качестве источника кремния природного сырья – диатомитового порошка³. Показано, что за счет свойств диатомитового порошка (мезопористость) карботермический синтез SiC возможен при умеренных температурах 1400±20°C (в условиях динамического вакуума), что приводит к формированию микрочастиц SiC с морфологией панцирей диатомовых водорослей– рис. 8.

Полученные керамические образцы имеют плотность 0,50÷0,58 г/см³, что соответствует пористости 82÷84 %; предел прочности при сжатии составил 3,7÷6,3 МПа. Установлено, что размер кристаллитов для всех изученных мольных

³ Совместно с МТУ

соотношений SiO₂:С находится в узком интервале 23÷30 нм и, вероятно, определяется в первую очередь температурой карботермического синтеза. Показано, что преимуществами разработанного метода является возможность создания сложной геометрии изделий с заданной пористостью.

Рисунок 8 – Морфология отдельных фрагментов карбидокремниевой керамики, сохраняющая микроструктуру панцирей диатомовых водорослей

<u>Глава 5.</u> С целью разработки эффективных синтетических подходов к получению нанокристаллических сверхтугоплавких карбидов с применением многопараметрического анализа равновесий в системах MO_x –С (M = Ta, Ti, Zr и Hf) в широком интервале температур и давлений показана возможность значительно снизить температуру карботермического синтеза соответствующих карбидов в случае проведения процессов в условиях умеренного разрежения (остаточное давление ~1·10⁻⁴ МПа) до 1200°С. Экспериментальная реализация данных режимов стала возможной благодаря получению золь-гель методом высокодисперсных, высоко реакционноспособных стартовых составов MO_x –С (M = Ta, Ti, Zr и Hf) путем контролируемого гидролиза металлсодержащих прекурсоров (алкоксида тантала и алкоксоацетилацетонатов титана, циркония и гафния) в присутствии полимерного источника углерода с последующим гелеобразованием, сушкой и карбонизацией в условиях динамического вакуума. Показано, что синтез нанодисперсных индивидуальных карбидов в условиях термической обработки при пониженном давлении осуществляется уже при температурах 950 (для TiC), 1050 (для TaC) и 1200°С (для ZrC и HfC). Средний размер кристаллитов продуктов не превышает 20 нм, а средний размер частиц (по данным ПЭМ) не превышает 60 нм.

Получение стартовых систем, В которых максимально равномерно высокодисперсные распределены компоненты, открыло возможность низкотемпературного синтеза и сложных карбидов тантала-циркония и танталагафния, имеющих рекордно высокие температуры плавления (~4000°С). Это, а также высокая скорость нагрева, позволяет нивелировать значение существенной разницы в реакционной способности Ta_2O_5 и $ZrO_2(HfO_2)$ в процессах восстановления. Использование разработанного карботермического метода приводит к тому, что однофазные образцы без примесей исходных оксидов или TaC, ZrC и HfC образуются уже при температурах синтеза 1200 (для Ta_4HfC_5) и 1300° С (Ta₄ZrC₅), что примерно на 1000 градусов ниже, чем температуры получения данных веществ путем спекания индивидуальных карбидов без участия спекающих компонентов. Такое существенное снижение температуры синтеза сложных карбидов позволяет получать наноразмерные продукты с заданным соотношением металлов; так, средний размер кристаллитов и частиц (по данным ПЭМ) образцов, полученных при 1200÷1400°С, составлял 9÷18 нм, а для продуктов, синтезированных при 1500°С, имел значение 36÷40 нм.

Благодаря универсальности разработанных золь-гель методик показана возможность их адаптации для получения карбидных тонких пленок и тугоплавких матриц композиционных материалов – рис. 9. При этом отмечены возможности модифицирования применения указанных подходов для химического сверхтугоплавкими карбидами порошков при изготовлении материалов ультравысокотемпературных с оптимальным распределением компонентов в объеме UHTC.

Рисунок 9. Микроструктура среза получаемого композиционного материала Сf/C-TiC и распределение в его структуре титана и углерода

<u>Глава 6</u>. Для разработки методов получения нанодисперсных модифицирующих компонентов ультравысокотемпературных материалов –

тугоплавких оксидов металлов – развиты два синтетических подхода к решению данной задачи – с использованием золь-гель технологии и гликоль-цитратного синтеза. Показано, что оба метода дают возможность получать нанокристаллические оксиды металлов заданного состава, размер ОКР которых даже при термической обработке при температуре 1400°С не превышает 100 нм; однако микроструктура и дисперсность получаемых различными методами продуктов значительно различается.

Рисунок 10 – Микроструктура образцов 15 мол.% Y₂O₃ – 60 мол.% ZrO₂ – 25 мол.% HfO₂, полученных гликоль-цитратным методом, после спекания в течение 2 ч при температурах 1200 (а) и 1400 °C (b)

Разработанные методики синтеза высокодисперсных порошков c применением гликоль-цитратного метода являются относительно технологически, простыми С использованием недорогих реагентов и могут быть легко адаптированы для промышленного производства. Отмечено, что все синтезированные данным методом тугоплавкие оксиды (Y₃Al₅O₁₂, Nd₂Hf₂O₇, Gd₂Hf₂O₇, твердый раствор состава 15 мол. % У2О3-60 мол. % ZrO₂- 25 мол. % HfO₂), обладающие фазовой стабильностью в широком интервале температур, образуются в виде высокодисперсных порошков с малой насыпной плотностью И с микроструктурой пористых каркасов в виде пены с 10), тонкими стенками (рис. что, вероятно, с тем. связано ЧТО инициирование реакции горения при температуре образцов 200÷350°C

происходит с активным газовыделением при кипении расплавов, а не на основе порошковых прекурсоров. Изучение процесса укрупнения частиц при термической обработке порошков при температурах 1000, 1200 и 1400°C в течение 2 и 4 ч показало, что на размер кристаллитов более значительное влияние оказывает изменение температуры, особенно, при прокаливании при 1200 и 1400°C. При этом установлено, что при спекании при высокотемпературной термической обработке практически не происходит увеличения толщины пленки, т.е. рост частиц происходит преимущественно в двух измерениях – рис. 10.

Для золь-гель же технологии относительно высокая стоимость прекурсоров и необходимость более длительных технологических стадий компенсируются существенными преимуществами, в первую очередь, ее универсальностью – легкой адаптацией для синтеза не только высокодисперсных порошков оксидов металлов заданного состава, но и для получения тонких пленок, а также для создания модифицирующих тугоплавких матриц при заполнении порового пространства композиционных материалов.

Для наиболее эффективного получения наноструктурированных продуктов разработан метод направленного синтеза гетеролигандных прекурсоров класса алкоксо-β-дикетонатов металлов при термической обработке раствора ацетилацетонатов соответствующих металлов в избытке высококипящих спиртов, в результате чего происходит необратимое разрушение координированных хелатных лигандов и их частично замещение алкоксо-группами – уравнение 1, рис. 11.

 $[M(O_2C_5H_7)_n] + 2x ROH = [M(O_2C_5H_7)_{n-x}(OR)_x] + xCH_3C(O)CH_3 + xC_2H_5(O)OR (1)$

Данный метод позволяет получать растворы алкоксоацетилацетонатов различных металлов с заданным соотношением лигандов во внутренней сфере, что дает возможность регулировать скорость образования гелей при контролируемом гидролизе прекурсоров. В частности, на примере синтеза оксида циркония-гафния-иттрия с мольным соотношением компонентов 60:25:15 установлено, что при увеличении степени замещения хелатных лигандов на алкоксо-фрагменты на 8 % (59—67 %) скорость образования геля увеличивается более чем на 3 порядка (время формирования геля с вязкостью 300 сП уменьшается с 1,7·10⁵ до 149 мин).

 Гидролитически неактивны,
 Относительно простые методы получения,
 Достаточная стабильность состава при хранении,
 Удобство при дозировании

Контролируемая реакционная способность в золь-гель процессах путем варьирования состава координационной сферы – соотношения алкоксидных и хелатных объемных лигандов

 Высокая чувствительность к влаге, в том числе, влаге воздуха,
 Трудности при хранении

Рисунок 11 – Схема синтеза прекурсоров – алкоксоацетилацетонатов металлов

Экспериментально показано, что режимы термической обработки ксерогелей

оказывают значительное влияние на микроструктуру, пористость и дисперсность синтезируемых оксидов. Так, отмечено, что в случае осуществления термической обработки ксерогелей в двухступенчатом процессе (на первой стадии проводился пиролиз органических фрагментов ксерогелей в инертной атмосфере с образованием матричного углерода, препятствующего агрегации частиц оксидных компонентов, а на второй стадии углерод удалялся прокаливанием порошка на воздухе) образуются более пористые (с существенной долей мезо- и микропор) наноструктурированные порошки, чем в случае одностадийной термической обработки ксерогелей на воздухе.

Установлено, что термическая обработка ксерогелей на воздухе с выдержкой при заданных температурах в течение 1÷6 ч позволяет снизить температуру кристаллизации ориентировочно на 200 градусов по сравнению с экспериментами по нагреву на воздухе без выдержки. При температуре синтеза ~400÷450°C для 8% Y₂O₃-92%ZrO₂ и 15%Y₂O₃-60%ZrO₂-25%HfO₂ средний размер кристаллитов составляет 3÷4 нм, а при температуре ~750÷800°C для Y₃Al₅O₁₂ средний размер кристаллитов ~32 нм (800°C).

Рисунок 12 – Упорядоченная микроструктура Y₃Al₅O₁₂-плёнки, полученной при 1200°С (СЗМ)

На примерах сложных оксидов 8% Y₂O₃-92% ZrO₂, циркония-иттрия циркония-гафния-иттрия $15\%Y_2O_3-$ 60%ZrO₂-25%HfO₂ иттрий-И алюминиевого $Y_3Al_5O_{12}$ граната показана возможность применения данных методик для получения тонких наноструктурированных пленок заданного состава – рис. 12.

Важность регулирования гидролитической активности синтезируемых прекурсоров путем направленного варьирования состава их координационной сферы показана в

эксперименте по получению функционально-градиентного материала SiC/(ZrO₂– $HfO_2-Y_2O_3$)⁴ с применением разработанных методик золь-гель синтеза сложных оксидов. Установлено, что благодаря достаточно высокой интегральной степени замещения ацетилацетонатных лигандов на алкоксо-фрагменты (67 %) общая пористость в объеме материала уменьшилась всего на ~28% (что важно для создания относительно легких авиационных материалов), в то время как в приповерхностных слоях заполнение порового пространства тугоплавким

⁴ Совместно со ФГУП «ВИАМ»

нанокристаллическим оксидом 15% Y₂O₃--60%ZrO₂--25%HfO₂ (размер кристаллитов ≤ 10 нм) привело к ее снижению более чем в 20 раз (по данным рентгеновской компьютерной микротомографии, разрешение 1,3 мкм). При этом отмечено значительное увеличение окислительной стойкости материала в целом.

Для наиболее перспективных, с нашей точки зрения, составов эффузионным методом Кнудсена с масс-спектрометрическим анализом газовой фазы изучены особенности парообразования при температурах выше 2000°С⁵.

Так, для $Y_3Al_5O_{12}$ установлено, что при изотермической выдержке образца при температуре 2675 К наблюдается одновременный переход в газовую фазу Al_2O_3 (в виде атомарного алюминия, Al_2O , AlO и O) и Y_2O_3 (в виде YO и O) с преимущественным удалением оксида алюминия из расплава, что соответствует соотношению летучестей индивидуальных оксидов Al_2O_3 и Y_2O_3 .

Для образцов гафнатов неодима (Nd₂Hf₂O₇) и гадолиния (Gd₂Hf₂O₇) со структурой пирохлора в интервале температур $2100\div2750$ К также происходит удаление более летучего оксида в виде LnO и O. Показано, что для гафната неодима Nd₂Hf₂O₇ полная отгонка Nd₂O₃ происходила уже при температуре ~2300 К (начало отгонки наблюдалось уже при температуре 2150 К), а для Gd₂Hf₂O₇ полного удаления Gd₂O₃ не наблюдалось и при 40-минутной выдержке при температуре 2500 К. Это подтверждает вывод о том, что тенденция изменения давления пара над системами Ln₂Hf₂O₇ в зависимости от типа редкоземельного элемента соответствует последовательному изменению летучести для индивидуальных оксидов Ln₂O₃.

Для твердого раствора состава 15 мол.% $Y_2O_3 - 60$ мол.% $ZrO_2 - 25$ мол.% HfO₂ показано, что при температуре 2790 К соотношения ионных токов YO⁺, ZrO⁺ и HfO⁺ в пределах погрешности эксперимента практически постоянны, что может говорить о конгруэнтной сублимации состава; отмечены низкие скорости испарения при данной температуре. При существенно более высокой температуре 2925 К (2650°С), всего на 100 градусов меньшей, чем температура плавления указанного состава, в условиях масс-спектрального эксперимента происходит обеднение твердой фазы оксидами иттрия и циркония за счет их избирательного испарения, причем полной отгонки какого-либо компонента системы в течение всего эксперимента (220 мин) не произошло. Показано, что парциальные давления пара YO, ZrO и HfO при температуре 2925 К (2650°С) над образцом исследуемого состава на начальном этапе парообразования более чем в 4 раза меньше, чем таковые над индивидуальными оксидами.

Результаты длительного (10 ч) нагрева объемного керамического материала состава 15 мол.% Y₂O₃ – 60 мол.% ZrO₂ – 25 мол.% HfO₂ в условиях,

⁵ Совместно с СПбГУ

промежуточных между парообразованием с открытой поверхности И равновесных условиях (в приоткрытой камере Кнудсена), показали, что несмотря на некоторое увеличение на первых минутах нагрева отношений интенсивностей ионных токов YO⁺/ZrO⁺ и YO⁺/HfO⁺ (что может быть связано с установлением равновесия в системе «эффузионная ячейка – образец»), в дальнейшем отношения интенсивностей ионных токов YO+/ZrO+, YO+/HfO+ и ZrO+/HfO+ оставались постоянными, что может свидетельствовать о конгруэнтном характере процесса парообразования – рис. 13а. РФА образца после термообработки в вакууме при ~2500°С показал, что кристаллическая решетка остается кубической, параметр которой близок к таковому для исходного образца. Микроструктура поверхности характеризуется наличием геометрически правильных пор и пустот кубической формы, которые образовались в результате длительного высокотемпературного воздействия в высоком вакууме (рис.13б). Картирование поверхности образца по основным элементам – кислороду, иттрию, цирконию и гафнию – показало, что отсутствуют области преимущественного концентрирования. Термический анализ образца в токе воздуха показал, что тепловых эффектов, связанных с фазовыми превращениями, в интервале 20÷1500°С (293÷1773 К) не наблюдается.

Таким образом, экспериментально показано, что исследованный состав 15 мол.% Y₂O₃ - 60 мол.% ZrO₂ - 25 мол.% HfO₂ при температуре 2770 К сублимирует конгруэнтно (в пределах погрешности определения), в том числе и в условиях, промежуточных по отношению к равновесным и испарению с открытой поверхности. Полученные данные позволяют рассматривать исследованный состав как перспективный для изготовления теплозащитной керамики или термобарьерных покрытий ультравысокотемпературного для применения, стабильных до температуры ~2500°С (2800 К).

Рисунок 13 – Изменение во времени отношения интенсивностей ионных токов YO⁺/ZrO⁺, YO⁺/HfO⁺ и ZrO⁺/HfO⁺ над образцом с начальным составом системы 15 мол.% Y₂O₃ – 60 мол.% ZrO₂ – 25 мол.% HfO₂ при температуре 2773±40 K (a) и микроструктура поверхности данного образца после 10-часового выдерживания в глубоком вакууме при указанной температуре (б)

<u>Глава 7</u>. Применение разработанных методик по синтезу нанодисперсного карбида кремния позволило получить композиционные порошки состава HfB₂/xSiC (x=10÷65 об. %) при контролируемом гидролизе тетраэтоксисилана в присутствии полимерного источника углерода и диспергированного в реакционной среде микропорошка HfB₂, многоступенчатой сушке, карбонизации при температуре 400° C (2 ч) при пониженном давлении и карботермическом синтезе.

Благодаря повышенной реакционной способности высокодисперсной стартовой системы $HfB_2/(SiO_2-C)$ синтез высокодисперсного карбида кремния при восстановлении в режиме ДСК/ТГА в токе аргона начинался уже при температуре ~1150°С. Отмечено, что в данном случае существенную роль играют побочные газофазные процессы, что сказывается на микроструктуре образующихся карбидокремниевых продуктов в виде длинных прядей, нарастающих на поверхности частиц $HfB_2 -$ рис. 14.

Данные ИК-спектроскопии и величина потери массы при синтезе свидетельствуют о том, что конверсия высокодисперсной системы SiO₂–C в карбид кремния при синтезе путем нагрева в токе аргона до 1500°C без выдержки протекает не в полной мере. При этом в полученных образцах при повышенных содержаниях состава SiO₂–C отмечается присутствие примеси кристаллического диоксида гафния, образовавшегося при окислении исходного порошка HfB₂ оксидами кремния и углерода.

Рисунок 14 – Микроструктура продуктов, полученных при нагреве в токе аргона до 1500°С без выдержки стартового состава HfB₂/(SiO₂-C) (15 об. % в пересчете на SiC): по данным детектора вторичных электронов (а) и в режиме контраста по среднему атомному номеру (б), СЭМ

Несмотря на неполное протекание процесса синтеза SiC при нагреве системы HfB₂/(SiO₂-C) в токе аргона до 1500°C, показана повышенная реакционная способность получаемого золь-гель методом высокодисперсного состава SiO₂-C, в

том числе благодаря максимально равномерному распределению компонентов друг в друге.

Осуществление карботермического синтеза в условиях динамического вакуума (P ~ $1 \cdot 10^{-5} \div 1 \cdot 10^{-6}$ МПа) при температуре 1400°С с выдержкой 4 ч дает возможность полного превращения SiO₂ в SiC. В данном случае образуется кубический карбид кремния со средним размером кристаллитов 16÷32 нм. Установлено, что полученная высокопористая нанодисперсная SiC-матрица содержит достаточно равномерно распределенные частицы HfB₂. При этом для составов, содержащих ≥30 об. % SiC, помимо карбидокремниевых глобулярных наночастиц (диаметром 30÷60 нм), образующих агрегаты вокруг HfB₂, на поверхности частиц диборида гафния формируются хорошо ограненные микронного размера образования карбида кремния в виде наростов длиной 200÷500 нм, а для составов, содержащих наибольшее количество SiC (55 и 65 об. %), длина этих образований достигает 1÷2 мкм (рис. 15).

Рисунок 15 – Микроструктура композиционного порошка HfB₂/SiC (65 об. % SiC), полученного в условиях динамического вакуума при температуре 1400°C: по данным детектора вторичных электронов (а, в, г) и в режиме контраста по среднему атомному номеру (б), СЭМ

Изучение термического поведения полученных композиционных порошков

HfB₂/xSiC (x=10÷65 об. %) в токе воздуха (250 мл/мин) показало, что даже минимальное количество введенного высокодисперсного SiC (10÷15 об. %) антиокислительное лействие. Наибольший эффект оказывает зашитное наблюдается для состава HfB₂/30 об. % SiC – снижение прироста массы, связанного с окислением, на ~1/3 по сравнению с индивидуальным порошком HfB₂. При дальнейшем повышении содержания SiC наблюдается постепенное увеличение прироста массы из-за окисления композиционного порошка в целом за счет увеличения доли в этом процессе нанодисперсного реакционно способного карбида кремния, однако даже при максимальном содержании 65 об. % SiC Δm в взаимодействия результате с кислородом воздуха меньше. чем для индивидуального порошка HfB₂.

Рисунок 16 – Доля окисленного композиционного порошка HfB₂/xSiC (x=0÷65 об. %) при нагреве в токе воздуха в интервале температур 20÷1400°C по сравнению с полным окислением обоих компонентов Сравнение экспериментально наблюдаемых приростов массы и рассчитанных в приближении полного окисления обоих компонентов систем HfB₂/xSiC дает возможность утверждать, что для составов с x=30÷55 об. % доля окисленного материала минимальна – рис. 16.

Таким образом, установлено, что химическое модифицирование поверхности порошка HfB₂ путем осуществления золь-гель синтеза нанодисперсного карбида кремния, позволяет значительно увеличить окислительную стойкость получаемых композиционных порошков при нагреве в токе воздуха до 1400°C.

Повышенная способность порошков $HfB_2/(SiO_2-C)$, реакционная порошков $HfB_2/xSiC$ (x = проявившаяся при получении композиционных 10÷65 οб. %), позволила предложить новый метод создания ультравысокотемпературных керамических композиционных материалов указанного состава, позволяющий совместить стадии изготовления керамики путем горячего прессования и карботермический синтез одного из компонентов нанокристаллическом состоянии, и обеспечивающий карбида кремния в максимально равномерное взаимное распределение частиц HfB_2 и SiC – рис. 17.

Рисунок 17 – Принципиальная схема предлагаемых подходов к изготовлению ультравысокотемпературных керамических материалов состава HfB₂/SiC (в центре и слева) и классического подхода (справа)

Проведенные эксперименты по горячему прессованию/карботермическому синтезу (атмосфера аргона, давление 30 МПа, выдержка при заданных температурах 15 мин) состава HfB₂/(SiO₂–C), где расчетное количество карбида кремния составляло 30 об. %, при различных температурах (1600, 1700, 1800 и 1900°С) позволили сделать вывод о том, что в полной мере синтез нанокристаллического SiC в данных условиях происходит при температурах \geq 1700°С (средний размер кристаллитов составляет 35÷38 нм). При температурах же 1800÷1900°С достигается максимальная плотность (7,7÷7,8 г/см³; 94÷95 % от теоретической), что соответствует расчетной пористости 5÷6 % (табл. 1).

Таблица 1 – Значения плотности ρ , расчетной пористости, линейной усадки dl/l₀ при горячем прессовании и средний размер кристаллитов *L* для образцов ультравысокотемпературной керамики HfB₂/30 об. % SiC, полученных при различных температурах

Температура,	ρ, г/см ³	ρ, %	Расчетная	dl/l ₀ , %	L, нм
°C			пористость*, %		
1600	$5,35\pm0,50$	64,4	35,6±6,0	51,2±4,0	47,6±2,6
1700	$7,55\pm0,08$	90,8	9,2±1,0	67,7±0,6	37,0±2,3
1800	7,66±0,20	94,5	5,5±2,4	68,9±0,7	35,7±1,7
1900	7,83±0,15	94,2	5,8±1,8	68,1±0,5	37,7±3,8

*Определено по сравнению с расчетными значениями плотности, полученными по аддитивному методу (плотность HfB₂ принята равной 10,5 г/см³, SiC – 3,2 г/см³).

Рисунок 18 – Внешний вид образцов HfB₂/xSiC (x=10÷65 об. %), полученных при температуре 1800°C

Принимая BO внимание необходимость понижения температуры изготовления UHTC, для получения керамических материалов $HfB_2/xSiC_{nano}$ (x = 10÷65 об. %) выбрана температура 1800°C. Внешний вид полученных образцов показан на рис. 18.

образцов Для ряда данного отмечено. для составов, что содержащих от 20 до 30 об. % SiC, наблюдается минимальная пористость (5÷6 %), при увеличении количества карбида кремния происходит ee систематический рост вплоть до 34 % (65 об. % SiC) – табл. 2.

Таблица 2 – Значения плотности ρ , расчетной пористости, линейной усадки dl/l₀ при горячем прессовании и средний размер кристаллитов *L* для образцов ультравысокотемпературной керамики HfB₂/xSiC (x=10÷65 об. %), полученных при температуре 1800°C

Х,	ρ, г/см ³	ρ, %	Расчетная	dl/l ₀ , %	<i>L</i> , нм
об. % SiC			пористость*, %		
10	8,69±0,08	89,0	11,0±0,9	52,3±0,5	42,4±2,6
15	8,42±0,04	89,5	10,5±0,4	61,9±0,3	41,0±2,8
20	8,54±0,18	94,4	5,6±2,0	67,7±3,3	38,3±2,1
25	8,21±0,20	94,6	5,4±2,3	69,4±0,4	38,3±1,3
30	7,86±0,20	94,5	5,5±2,4	68,9±0,7	35,7±1,7
35	6,81±0,15	85,7	14,3±1,8	65,5±1,6	40,7±1,7
45	5,85±0,16	81,0	19,0±2,3	76,0±1,0	50,8±1,2
55	4,64±0,19	71,5	28,5±3,0	73,4±1,9	54,5±2,8
65	3,78±0,13	65,6	34,4±2,2	75,3±1,1	60,3±1,5

*Определено по сравнению с расчетными значениями плотности, полученными по аддитивному методу (плотность HfB_2 принята равной 10,5 г/см³, SiC – 3,2 г/см³).

Показано, что в выбранных условиях в составе образцов присутствуют только фазы гексагонального диборида гафния и кубического карбида кремния, причем размеры OKP SiC составляют 36÷60 нм (минимальные размеры

31

кристаллитов отмечены для составов, содержащих 20, 25 и 30 об. % SiC). Кристаллические примеси (HfO₂, HfC) отсутствуют.

Термический поведения анализ полученных материалов токе воздуха при В 1400°C до нагреве свидетельствует о том, что на процесс окисления значительное влияние оказывает как пористость полученных материалов, так и ИХ состав – рис. 19. Группа образцов с наибольшей окислительной стойкостью в интервале температур 20÷1400°C

содержит от 15 до 30 об. % SiC (пористость ~ $4\div10$ %), прирост массы которых за счет окисления составил от 0,14 до 0,27 %.

Рисунок 20. Кривые ТГА образцов состава HfB₂/15 об. % SiC, полученных на основе коммерчески доступных порошков HfB₂ и SiC методом SPS (1) и по предложенной методике на основе горячего прессования HfB₂/(SiO₂-C) (2)

Для сравнения стойкости к окислению при относительно невысоких температурах (до 1400°С) в аналогичных условиях выполнен термический анализ образцов одинаковым с составом (15 об. % SiC, рис. 20), но полученных различными методами: первый – методом SPS на коммерчески основе доступных

микродисперсных

порошков HfB₂ и SiC, а второй – с использованием предложенной нами

методики. Как видно, прирост массы, связанный с окислением материалов, для

образца, полученного при горячем прессовании состава $HfB_2/(SiO_2-C)$ почти в 27 раз меньше, чем для образца, полученного в результате SPS HfB_2 и SiC. Очевидно, что достаточно большой вклад в столь значительную разницу внесло трехкратное различие пористости. Для более строгого анализа влияния особенностей методов изготовления на окислительную стойкость UHTC проведен эксперимент, в котором при одинаковом составе материалов (45 об. % SiC) пористость образца, полученного на основе порошков HfB_2 и SiC, была меньше (17 %), чем таковая для образца, изготовленного в рамках предложенного нами метода (20 %). Установлено, что и в этом случае для первого образца прирост массы из-за окисления составил в три раза большее значение, чем для второго (3,81 по сравнению с 1,27 %).

Таким образом, показано, что повышение окислительной стойкости ультравысокотемпературных керамических материалов состава HfB₂/SiC в интервале температур 20÷1400°C может быть осуществлено не только благодаря снижению пористости и подбору соотношения HfB₂:SiC, но и благодаря особенностям метода изготовления, предусматривающего химическое модифицирование поверхности порошка HfB₂ высокодисперсной системой SiO₂–C и последующее получение наноразмерного карбида кремния.

В целом, необходимо отметить перспективность предложенного метода для низкотемпературного (1700÷1900°С) изготовления ультравысокотемпературной керамики состава HfB₂/xSiC (x=10÷65 об. %) различной пористости, обладающей высокой стойкостью к окислению при термообработке на воздухе.

выводы

1. Разработаны и реализованы новые подходы к синтезу важнейших высокодисперсных составляющих компонентной базы для создания ультравысокотемпературных керамических композиционных материалов HfB₂/SiC – карбида кремния, сверхтугоплавких карбидов и оксидов металлов – с применением подходов золь-гель технологии. Предложенные методы позволяют получать указанные бинарные соединения в виде высокодисперсных порошков, тонких наноструктурированных пленок и модифицирующих матриц при создании композиционных материалов, в том числе изделий сложной формы.

2. Предложен новый метод получения пористой карбидокремниевой керамики, дающий возможность осуществить карботермический синтез SiC непосредственно в ходе изготовления материала методом искрового плазменного спекания или горячего прессования систем SiO₂–C, полученных золь-гель методом, при сравнительно невысоких температурах (1700÷1800°C). Отмечено, что размер кристаллитов SiC составил ~37 (горячее прессование, 1700°C, 20 МПа) и 48÷57 нм (SPS, 1700÷1800°C, 23÷26 МПа). Показано, что значения плотности, предела

прочности при сжатии, структура пор и удельная площадь поверхности зависят от условий карботермического синтеза в процессе горячего прессования или SPS.

3. Разработан метод получения высокопористой (82÷84%) биоморфной карбидокремниевой керамики с применением полимерной технологии и использованием в качестве источника кремния природного сырья – диатомитового порошка. Показано, что благодаря особенностям микроструктуры диатомитового порошка возможно уменьшение температуры карботермического синтеза SiC до 1400±20°C. Установлено, что размер кристаллитов SiC для всех изученных соотношений SiO₂:С находится в узком интервале 23÷30 нм и, вероятно, определяется в первую очередь температурой карботермического синтеза. Отмечено, что преимуществом разработанного метода является возможность создания высокопористых изделий сложной геометрии.

4. Предложен новый метод изготовления ультравысокотемпературных керамических материалов состава HfB₂/xSiC (x=10÷65 об. %), заключающийся в осуществлении горячего прессования при относительно мягких условиях (1700÷1900°С, время выдержки 15 мин, 30 МПа) композиционных порошков HfB₂/(SiO₂–C), полученных с применением золь-гель технологии. Показано, что при температуре 1800°С для составов, содержащих от 20 до 30 об. % SiC, формируются образцы с минимальной пористостью (5÷6 %) и наибольшей окислительной стойкостью. Установлено, что средний размер OKP SiC составляет 36÷60 нм (минимальные размеры кристаллитов отмечены для составов, содержащих 20, 25 и 30 об. % SiC).

5. Разработан новый метод химического модифицирования поверхности частиц HfB_2 нанокристаллическим карбидом кремния с образованием композиционных порошков состава $HfB_2/xSiC$ (x=10÷65 об. %) с равномерным распределением компонентов и повышенной окислительной стойкостью при нагреве до температуры 1400°C в токе воздуха. Выявлены оптимальные соотношения компонентов, позволяющие получать более стойкие к окислению композиционные порошки $HfB_2/xSiC$.

6. Исследована эволюция химического состава и микроструктуры модельных керамических материалов HfB₂/SiC с различным содержанием карбида кремния (10÷45 об. %) и пористостью (20÷39 %), полученных методом искрового SiC. порошков HfB_2 И под воздействием плазменного спекания высокоэнтальпийных потоков воздуха и изучено явление быстрого разогрева поверхности материалов до температуры ~2500÷2700°С. Показано влияние формирующегося при данных температурах на поверхности пористого каркаса малотеплопроводного HfO₂ на процесс испарения слоя боросиликатного стекла и сохранение его защитных свойств, позволяющих осуществлять длительное (десятки минут) воздействие потоков диссоциированного воздуха.

7. Разработан метод, позволяющий при умеренных температурах ($\leq 1500^{\circ}$ С) синтезировать в нанодисперсном состоянии сверхтугоплавкие карбиды металлов (TaC, TiC, ZrC, HfC), в том числе сложные карбиды тантала-циркония (Ta₄ZrC₅) и тантала-гафния (Ta₄HfC₅), имеющие рекордно высокие температуры плавления (около 4000°С), востребованные в качестве модифицирующих компонентов в составе ультравысокотемпературных керамических материалов. Установлено, что средний размер кристаллитов продуктов ≤ 20 нм, а размер частиц составляет ≤ 60 нм (по данным ПЭМ). Показана перспективность данного метода для нанесения тонких наноструктурированных карбидных пленок и создания керамических матриц композиционных материалов.

8. Разработаны золь-гель И гликоль-цитратный методы синтеза высокодисперсных тугоплавких оксидов металлов – иттрий-алюминиевого граната, гафнатов неодима (Nd₂Hf₂O₇) и гадолиния (Gd₂Hf₂O₇) со структурой пирохлора, твердых растворов 8% Y₂O₃-92% ZrO₂ и 15% Y₂O₃-60% ZrO₂-25% HfO₂ и оксида циркония-титана ZrTiO₄, перспективных в качестве спекающих и стабилизирующих окисленную область компонентов ультравысокотемпературных керамических материалов. Выявлено, что разработанная методика золь-гель синтеза оксидов металлов с применением В качестве прекурсоров алкоксоацетилацетонатов металлов с заданным составом координационной сферы позволяет получать и тонкие наноструктурированные пленки оксидов заданного состава, а также керамические матрицы композиционных материалов (на примере создания функционально-градиентного керамического материала SiC/(ZrO₂-HfO₂-Y₂O₃)). Для составов Y₃Al₅O₁₂, Nd₂Hf₂O₇, Gd₂Hf₂O₇ и 15% Y₂O₃-60% ZrO₂-25% HfO₂ эффузионным методом Кнудсена с масс-спектрометрическим анализом газовой фазы изучены особенности парообразования при температурах выше 2000°С. Экспериментально показано, что состав 15 мол.% У2О3- 60 мол.% ZrO2-25 мол.% HfO₂ при температуре ≤2770 К в высоком вакууме сублимирует конгруэнтно.

БЛАГОДАРНОСТИ

Автор выражает глубокую благодарность своему учителю и наставнику чл.-корр. РАН В.Г. Севастьянову за свое становление как ученого, за постоянное внимание, всестороннюю поддержку и ценную помощь на всех этапах работы, д.х.н. Ю.С. Ежову за выполненные им термодинамические расчеты и формирование интереса к связи между строением молекул и свойствами соответствующих веществ, к.х.н. Н.П. Симоненко за большую помощь в экспериментальной работе и моральную поддержку, своим коллегам и соавторам к.х.н. В.С. Попову, к.х.н. Р.Г. Павелко, к.х.н. Н.А. Игнатову, к.х.н. М.А. Чистякову, к.х.н. С.В. Сизовой, В.И. Якимову, А.В. Дербеневу, В.А. Николаеву, К.А. Сахарову, А.С. Мокрушину и Ф.Ю. Горобцову за помощь на различных этапах исследования. Большую признательность за совместные исследования автор выражает акад. Е.Н. Каблову и к.т.н. Д.В. Гращенкову, чл.-корр. РАН В.Л. Столяровой и д.х.н. С.И. Лопатину, д.ф.-м.н. А.Ф. Колесникову и к.ф.-м.н. А.Н. Гордееву, чл.-корр. РАН В.А. Авраменко, к.х.н. Е.К. Папынову и О.О. Шичалину, д.т.н. И.Д. Симонову-Емельянову и к.т.н. Н.Л. Шембель, к.т.н. Л.А. Орловой, к.х.н. Ю.А. Великодному, к.т.н. В.И. Перепеченых, Г.П. Копице, д.х.н. М. Хаддажу.

Отдельную огромную благодарность автор выражает своим коллегам из Лаборатории химии легких элементов и кластеров ИОНХ РАН, особенно, акад. Н.Т. Кузнецову за поддержку, внимание и важные замечания.

Основное содержание диссертации отражено в следующих публикациях: Статьи в рецензируемых журналах, рекомендованных ВАК:

1. Sevastyanov V.G. Thermodynamic Analysis of the Production of Silicon Carbide via Silicon Dioxide and Carbon / V.G. Sevastyanov, Y.S. Ezhov, E.P. Simonenko, N.T. Kuznetsov // Materials Science Forum – 2004. – T. 457-460 – C.59–62.

2. Севастьянов В.Г. Синтез и исследование термической стабильности высокодисперсных тугоплавких цирконатов и гафнатов лантана и неодима для термобарьерных покрытий / В.Г. Севастьянов, Е.П. Симоненко, Н.А. Игнатов, Р.Г. Павелко, Н.Т. Кузнецов // Композиты и наноструктуры – 2009. – Т. 1 – № 1 – С.50–59.

3. Кузнецов Н.Т. Высокодисперсные тугоплавкие соединения для создания высокотемпературных керамоматричных композитов / Н.Т. Кузнецов, В.Г. Севастьянов, Е.П. Симоненко // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева) – 2009. – Т. LIII – № 2 – С.116–122.

4. Севастьянов В.Г. Низкотемпературный синтез карбида тантала через транспарентный тантал-углеродсодержащий гель / В.Г. Севастьянов, Е.П. Симоненко, Н.А. Игнатов, Ю.С. Ежов, Н.Т. Кузнецов // Неорганические материалы – 2010. – Т. 46 – № 5 – С.563–569.

5. Симоненко Е.П. Карбидокремниевое покрытие на поверхности многослойных углеродных нанотрубок / Е.П. Симоненко, В.Г. Севастьянов, В.П. Мешалкин, Н.Т. Кузнецов // Композиты и наноструктуры – 2009. – Т. 1 – № 4 – С.28–34.

6. Симоненко Е.П. Карботермическое получение порошка высокодисперсного монокарбида тантала / Е.П. Симоненко, Н.А. Игнатов, Ю.С. Ежов, В.Г. Севастьянов, В.П. Мешалкин, Н.Т. Кузнецов // Вестник Самарского государственного аэрокосмического университета имени академика С. П. Королёва (национального исследовательского университета) – 2011. – Т. 1 – С.93–100.

7. Sevast'yanov V.G. Experimental and theoretical determination of the saturation vapor pressure of silicon in a wide range of temperatures / V.G. Sevast'yanov, P.Y. Nosatenko, V.V. Gorskii, Y.S. Ezhov, D.V. Sevast'yanov, E.P. Simonenko, N.T. Kuznetsov // Russ. J. Inorg. Chem. $-2010. - T.55 - N_{2} 13 - C.2073 - 2088$.

8. Севастьянов В.Г. Низкотемпературный синтез нанодисперсных карбидов титана, циркония и гафния / В.Г. Севастьянов, Е.П. Симоненко, Н.А. Игнатов, Ю.С. Ежов, Н.П. Симоненко, Н.Т. Кузнецов // Журн. неорган. хим. – 2011. – Т. 56 – № 5 – С.707–719.

9. Севастьянов В.Г. Синтез высокодисперсного тугоплавкого оксида циркония – гафния – иттрия с использованием золь-гель техники / В.Г. Севастьянов, Е.П. Симоненко, Н.П. Симоненко, Н.Т. Кузнецов // Журн. неорган. хим. – 2012. – Т. 57 – № 3 – С.355–361.

10. Симоненко Е.П. Синтез высокодисперсных сверхтугоплавких карбидов танталациркония Ta₄ZrC₅ и тантала-гафния Ta₄HfC₅ через золь-гель технику / Е.П. Симоненко, Н.А. Игнатов, Н.П. Симоненко, Ю.С. Ежов, В.Г. Севастьянов, Н.Т. Кузнецов // Журн. неорган. хим. – 2011. – Т. 56 – № 11 – С.1763–1769.

11. Симоненко Е.П. Синтез высокодисперсного иттрийалюминиевого граната с использованием золь-гель техники / Е.П. Симоненко, Н.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Журн. неорган. хим. – 2012. – Т. 56 – № 12 – С.1619–1626.

12. Симоненко Е.П. Функционально градиентный композиционный материал SiC/(ZrO₂-HfO₂-Y₂O₃), полученный с применением золь-гель метода / Е.П. Симоненко, Н.П. Симоненко, В.Г. Севастьянов, Д.В. Гращенков, Н.Т. Кузнецов, Е.Н. Каблов // Композиты и наноструктуры – 2011. – № 4 – С.52–64.

13. Севастьянов В.Г. Синтез, парообразование и термодинамика высокодисперсного порошка Nd₂Hf₂O₇ / В.Г. Севастьянов, Е.П. Симоненко, Севастьянов Д.В., Н.П. Симоненко, В.Л. Столярова, С.И. Лопатин, Н.Т. Кузнецов // Журн. неорган. хим. – 2013. – Т. 58 – № 1 – С.3–10.

14. Sevast'yanov V.G. Synthesis of Finely Dispersed La₂Zr₂O₇, La₂Hf₂O₇, Gd₂Zr₂O₇ and Gd₂Hf₂O₇ Oxides / V.G. Sevast'yanov, E.P. Simonenko, N.P. Simonenko, Sakharov K.A., N.T. Kuznetsov // Mendeleev Communications $-2013. - T. 23 - N_{2} 1 - C.17 - 18$.

15. Севастьянов В.Г. Неразрушающий ультразвуковой контроль толщины карбидокремниевого покрытия на углерод-углеродных материалах / В.Г. Севастьянов, Е.П. Симоненко, В.В. Горский, Н.П. Симоненко, Н.Б. Генералова, Н.Т. Кузнецов // Композиты и наноструктуры – 2012. – № 4 – С.53–64.

16. Sevastyanov V.G. Synthesis, Vaporization and Thermodynamic Properties of Superfine $Nd_2Hf_2O_7$ and $Gd_2Hf_2O_7 / V.G.$ Sevastyanov, E.P. Simonenko, N.P. Simonenko, V.L. Stolyarova, S.I. Lopatin, N.T. Kuznetsov // Eur. J. Inorg. Chem. – 2013. – T. 2013 – $N^{\circ} 26 - C.4636$ –4644.

17. Симоненко Е.П. Синтез нанокристаллического карбида кремния с использованием золь-гель метода / Е.П. Симоненко, Н.П. Симоненко, А.В. Дербенев, В.А. Николаев, Д.В. Гращенков, В.Г. Севастьянов, Е.Н. Каблов, Н.Т. Кузнецов // Журн. неорган. хим. – 2013. – Т. 58 – № 10 – С.1279–1288.

18. Севастьянов В.Г. Получение сверхвысокотемпературных композиционных материалов HfB₂–SiC и исследование их поведения под воздействием потока диссоциированного воздуха / В.Г. Севастьянов, Е.П. Симоненко, А.Н. Гордеев, Н.П. Симоненко, А.Ф. Колесников, Е.К. Папынов, О.О. Шичалин, А.В. Авраменко, Н.Т. Кузнецов // Журн. неорган. хим. – 2013. – Т. 58 – № 11 – С.1419–1426.

19. Simonenko E.P. Promising ultra-high-temperature ceramic materials for aerospace applications / E.P. Simonenko, D.V. Sevast'yanov, N.P. Simonenko, V.G. Sevast'yanov, N.T. Kuznetsov // Russ. J. Inorg. Chem. $-2013 - T.58 - N_{2} 14 - C.1669 - 1693$.

20. Симоненко Н.П. Золь–гель синтез микротрубок оксида циркония / Н.П. Симоненко, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Ядерная физика и инжиниринг – 2014. – Т. 5 – № 4 – С.331–336.

21. Симоненко Е.П. Исследование процесса синтеза нанокристаллического сложного карбида тантала–циркония / Е.П. Симоненко, Н.П. Симоненко, Ю.С. Ежов, В.Г. Севастьянов, Н.Т. Кузнецов // Ядерная физика и инжиниринг – 2014. – Т. 5 – № 4 – С.337–345.

22. Севастьянов В.Г. Получение керамического материала состава HfB₂-SiC (45 об. %) и исследование его поведения под длительным воздействием потока диссоциированного воздуха / В.Г. Севастьянов, Е.П. Симоненко, А.Н. Гордеев, Н.П. Симоненко, А.Ф. Колесников, Е.К. Папынов, О.О. Шичалин, А.В. Авраменко, Н.Т. Кузнецов // Журн. неорган. хим. – 2014. – Т. 59 – № 11 – С.1542–1556.

23. Севастьянов В.Г. Получение керамических материалов состава HfB₂-SiC (10– 20 об. %) и исследование их поведения под длительным воздействием потока диссоциированного воздуха / В.Г. Севастьянов, Е.П. Симоненко, А.Н. Гордеев, Н.П. Симоненко, А.Ф. Колесников, Е.К. Папынов, О.О. Шичалин, А.В. Авраменко, Н.Т. Кузнецов // Журн. неорган. хим. – 2014. – Т. 59 – № 12 – С.1611–1632.

24. Simonenko E.P. Preparation of high-porous SiC ceramics from polymeric composites based on diatomite powder / E.P. Simonenko, N.P. Simonenko, M.A. Zharkov, N.L. Shembel, I.D. Simonov-Emel'yanov, V.G. Sevastyanov, N.T. Kuznetsov // Journal of Materials Science – $2015. - T. 50 - N_{\odot} 2 - C.733 - 744$.

25. Севастьянов В.Г. Получение нитевидных кристаллов карбида кремния с применением золь-гель метода в объеме SiC-керамики / В.Г. Севастьянов, Е.П. Симоненко, Н.П. Симоненко, Д.В. Гращенков, С.С. Солнцев, Г.В. Ермакова, Г.М. Прокопченко, Е.Н. Каблов, Н.Т. Кузнецов // Композиты и наноструктуры – 2014. – Т. 6 – № 4 – С.198–211.

26. Симонов-Емельянов И.Д. Получение высокопористой Nb_xTa_{1-x}C керамики из полимерных композиционных материалов на основе фенолоформальдегидного связующего и биметаллического маловодного гидроксида ниобия и тантала / И.Д. Симонов-Емельянов, Н.Л. Шембель, А.В. Никитина, Е.Е. Никишина, Е.Н. Лебедева, Д.В. Дробот, Е.П. Симоненко, Н.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Неорганические материалы – 2015. – Т. 51 – № 10 – С.1148–1154.

27. Sevastyanov V.G. Synthesis, vaporization and thermodynamics of ceramic powders based on the Y_2O_3 – ZrO_2 – HfO_2 system / V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, V.L. Stolyarova, S.I. Lopatin, N.T. Kuznetsov // Materials Chemistry and Physics – 2015. – T. 153 – C.78–87.

28. Симоненко Н.П. Получение тонких пленок 8%Y₂O₃-92%ZrO₂ (8YSZ) с применением золь-гель технологии / Н.П. Симоненко, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Журн. неорган. хим. – 2015. – Т. 60 – № 7 – С.878–886. 29. Севастьянов В.Г. Поведение керамического материала HfB₂-SiC (45 об. %) в потоке диссоциированного воздуха и анализ спектра излучения пограничного слоя над его поверхностью / В.Г. Севастьянов, Е.П. Симоненко, А.Н. Гордеев, Н.П.

Симоненко, А.Ф. Колесников, Е.К. Папынов, О.О. Шичалин, А.В. Авраменко, Н.Т. Кузнецов // Журн. неорган. хим. – 2015. – Т. 60 – № 11 – С.1485–1499.

30. Simonenko E.P. Study of the synthesis of nanocrystalline mixed tantalum–zirconium carbide / E.P. Simonenko, N.P. Simonenko, Y.S. Ezhov, V.G. Sevastyanov, N.T. Kuznetsov // Physics of Atomic Nuclei – 2015. – T. $78 - N_{2} 12 - C.1357 - 1365$.

31. Симоненко Н.П. Получение тонких наноструктурированных плёнок иттрийалюминиевого граната (Y₃Al₅O₁₂) с применением золь-гель технологии / Н.П. Симоненко, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Журн. неорган. хим. – 2016. Т. 61 – № 6 – С. 703–709.

32. Симоненко Н.П. Получение тонких наноструктурированных плёнок железоиттриевого граната (Y₃Fe₅O₁₂) с применением золь-гель технологии / Н.П. Симоненко, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Журн. неорган. хим. – 2016. Т. 61 – № 7 – С. 805–810.

Патенты:

1. Кузнецов Н.Т. Способ поверхностной и объемной защиты керамоматричных композитов типа C/SiC и SiC/SiC / Н.Т. Кузнецов, П.Д. Саркисов, В.В. Рыбин, В.Г. Севастьянов, Л.А. Орлова, Е.П. Симоненко – Пат. РФ № 2322425 от 20.04.2008.

2. Кузнецов Н.Т. Способ получения высокодисперсного карбида кремния / Н.Т. Кузнецов, В.Г. Севастьянов, Р.Г. Павелко, Е.П. Симоненко – Пат. РФ № 2339574 от 27.11.2008.

3. Кузнецов Н.Т. Способ получения высокодисперсных тугоплавких карбидов для покрытий и композитов на их основе / Н.Т. Кузнецов, В.Г. Севастьянов, Е.П. Симоненко, Н.А. Игнатов, Н.П. Симоненко, Ю.С. Ежов– Пат. РФ № 2333888 20.09.2008.

4. Кузнецов Н.Т. Способ обработки огнеупорных изделий / Н.Т. Кузнецов, В.Г. Севастьянов, В.И. Якимов, Е.П. Симоненко – Пат. РФ № 2356873 от 27.05.2009.

5. Каблов Е.Н. Способ защиты углеродсодержащих материалов карбидом кремния / Е.Н. Каблов, Н.Т. Кузнецов, П.Д. Саркисов, Д.В. Гращенков, В.Г. Севастьянов, Л.А. Орлова, Е.П. Симоненко – Пат. РФ № 2350580 от 27.03.2009.

6. Севастьянов В.Г. Способ получения нановолокон карбида кремния / В.Г. Севастьянов, Р.Г. Павелко, А.В. Антипов, Е.П. Симоненко, В.А. Ермаков, Н.Т. Кузнецов, Е.Н. Каблов – Пат. РФ № 2393112 от 27.06.2010.

7. Кузнецов Н.Т. Способ получения нанодисперсных оксидов / Н.Т. Кузнецов, В.Г. Севастьянов, Е.П. Симоненко, Н.П. Симоненко, Н.А. Игнатов– Пат. РФ № 2407705 от 27.12.2010.

8. Кузнецов Н.Т. Способ получения наноструктурированных покрытий оксидов металлов / Н.Т. Кузнецов, В.Г. Севастьянов, Е.П. Симоненко, Н.П. Симоненко– Пат. РФ № 2521643 от 10.07.2014.

9. Симонов-Емельянов И.Д. Полимерная композиция для получения карбидов ниобия, тантала и их твердых растворов / И.Д. Симонов-Емельянов, Н.Л. Шембель, Д.В. Дробот, Е.Н. Лебедева, Е.Е. Никишина, Н.Т. Кузнецов, В.Г. Севастьянов, Е.П. Симоненко, Н.П. Симоненко – Пат. РФ № 2537595 от 10.01.2015.

10. Симонов-Емельянов И.Д. Способ получения β-карбида кремния / И.Д. Симонов-Емельянов, Н.Л. Шембель, М.А. Жарков, Н.Т. Кузнецов, В.Г. Севастьянов, Е.П. Симоненко, Н.П. Симоненко – Пат. РФ № 2542275 от 20.02.2015. 11. Кузнецов Н.Т. Способ получения наноструктурированной карбидокремниевой керамики / Н.Т. Кузнецов, В.Г. Севастьянов, Е.П. Симоненко, Н.П. Симоненко, А.В. Авраменко, Е.К. Папынов, О.О. Шичалин – Пат. РФ 2556599 от 10.07.2015.

Статьи в иных научных журналах и в сборниках трудов научных конференций:

1. Симоненко Н.П. Применение золь-гель технологии при создании высокотемпературных керамоматричных композиционных материалов и покрытий / Н.П. Симоненко, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов, Т.Л. Егорова // Сборник материалов Конференция «Современные достижения в области создания перспективных неметаллических композиционных материалов и покрытий для авиационной и космической техники», 18.12.2015, Москва – 2015. – С.1–13.

2. Симоненко Е.П. Применение эмиссионной спектроскопии для анализа поведения ультравысокотемпературных материалов состава HfB₂-SiC под воздействием потока диссоциированного воздуха / Е.П. Симоненко, А.Н. Гордеев, Н.П. Симоненко, А.Ф. Колесников, Е.К. Папынов, О.О. Шичалин, А.В. Авраменко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник материалов Конференция «Современные достижения в области создания перспективных неметаллических композиционных материалов и покрытий для авиационной и космической техники», 18.12.2015, Москва – 2015. – С.1–16.

3. Симоненко Е.П. Ультравысокотемпературные керамические материалы состава HfB₂-SiC (10, 15 и 20 об. %) и их поведение под воздействием потока диссоциированного воздуха / Е.П. Симоненко, А.Н. Гордеев, Н.П. Симоненко, А.Ф. Колесников, Е.К. Папынов, О.О. Шичалин, А.В. Авраменко, В.Г. Севастьянов, Н.Т. Кузнецов // В сборнике «Новые материалы, технологии и приборы для космической техники», под ред. И.Г. Ассовского, А.А. Берлина, Москва, Черноголовка: ИХФ РАН ИХФ РАН – 2015. – С.64–67.

4. Симоненко Н.П. Получение функционально-градиентных высокотемпературных керамоматричных композиционных материалов с применением золь-гель технологии / Н.П. Симоненко, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // В сборнике «Новые материалы, технологии и приборы для космической техники», под ред. И.Г. Ассовского, А.А. Берлина, Москва, Черноголовка: ИХФ РАН – 2015. – С.37–39.

5. Симоненко Е.П. Ультравысокотемпературные керамические материалы состава HfB₂-SiC / Е.П. Симоненко, А.Н. Гордеев, Н.П. Симоненко, А.Ф. Колесников, Е.К. Папынов, О.О. Шичалин, А.В. Авраменко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник докладов Конференции «Высокотемпературные керамические композиционные материалы и защитные покрытия», Москва, 11.12.2014 – 2014. – C.1–13.

6. Симоненко Н.П. Получение высокотемпературного биоморфного композиционного материала SiC/(15мол.%Y₂O₃-60мол.%ZrO₂-25мол.%HfO₂) / Н.П. Симоненко, А.Е. Ершов, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Материалы Всероссийской конференции «Практическая микротомография», Москва, 2-4.10.2013 – 2013. – С.129–133.

7. Sevastyanov V.G. Synthesis of SiC-whiskers via sol-gel technique in the bulk of SiC composite / V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, D.V. Grashchenkov,

E.N. Kablov, N.T. Kuznetsov // The 19th International Conference on Composite Materials, e-Proceedings, Montreal, Canada, 28.07.13-02.08.13 – 2013. – C.4695–4702.

8. Севастьянов В.Г. Получение функционально градиентного композиционного материала SiC/(ZrO₂-HfO₂-Y₂O₃) с применением золь-гель метода / В.Г. Севастьянов, Е.П. Симоненко, Н.П. Симоненко, Д.В. Гращенков, Н.Т. Кузнецов, Е.Н. Каблов // Сборник докладов конференции «Современные высокотемпературные композиционные материалы и покрытия», Москва, 04.04.2013 – 2013. – С.1–5.

9. Sevastyanov V.G. Synthesis, Sintering and Study of The Vaporization Processes and Thermodynamic Properties of $Nd_2Hf_2O_7$ / V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, V.L. Stolyarova, S.I. Lopatin, D.V. Sevastyanov, N.T. Kuznetsov // Fray International Symposium "Metals and Materials Processing in a Clean Environment", v. 7: Composites, Ceramics, Nanomaterials & Titanium Processing, ed. Florian Kongoli – 2011. – C.345–354.

10. Дербенев А.В. Синтез высокодисперсного карбида кремния через золь-гель технику / А.В. Дербенев, В.А. Николаев, Н.П. Симоненко, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Сборник трудов Второй Всероссийской школысеминара студентов, аспирантов и молодых ученых по тематическому направлению деятельности национальной нанотехнологической сети «Функциональные наноматериалы и высокочистые вещества», Москва, 11-13.04.2011 – 2011. – С.132–135.

11. Севастьянов В.Г. Нанокристаллические карбиды тантала-циркония и танталагафния / В.Г. Севастьянов, Е.П. Симоненко, Н.А. Игнатов, Н.П. Симоненко, Ю.С. Ежов // Сборник трудов ежегодной научной конференции-конкурса ИОНХ РАН, Москва – 2010. – С.60–63.

12. Sevastyanov V.G. Synthesis of Nanocrystalline Titanium, Zirconium and Hafnium Carbides via Sol-Gel Technique / V.G. Sevastyanov, E.P. Simonenko, N.A. Ignatov, Y.S. Ezhov, N.T. Kuznetsov // High Temperature Ceramic Materials and Composites. Ed. W. Krenkel, J. Lamon, Proceedings of 7th International Conference on High Temperature Ceramic Matrix Composites (HT-CMC 7), 20-22.09.2010, Bayreuth, Germany – 2010. – C.869–874.

13. Sevastyanov V.G. Synthesis of Superfine Gd₂Hf₂O₇ and Study of its Vaporization // High Temperature Ceramic Materials and Composites / V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, Y.S. Ezhov, V.L. Stolyarova, S.I. Lopatin, N.T. Kuznetsov // High Temperature Ceramic Materials and Composites. Ed. W. Krenkel, J. Lamon, Proceedings of 7th International Conference on High Temperature Ceramic Matrix Composites (HT-CMC 7), 20-22.09.2010, Bayreuth, Germany – 2010. – C.761–766.

14. Sevastyanov V.G. Synthesis of Nanosized Powder of Yttrium- Aluminium Garnet (YAG) and its Application in the Production of SiC/Y₃Al₅O₁₂ Composite / V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, N.T. Kuznetsov // High Temperature Ceramic Materials and Composites. Ed. W. Krenkel, J. Lamon, Proceedings of 7th International Conference on High Temperature Ceramic Matrix Composites (HT-CMC 7), 20-22.09.2010, Bayreuth, Germany – 2010. – C.138–142.

15. Sevastyanov V.G. Synthesis of nanosized zirconia – hafnia – yttria with optimized composition as component parts of high-temperature ceramic matrix composites (CMCs) / V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, N.T. Kuznetsov // 14th European

Conference on Composite Materials ECCM 14, Budapest (Hungary), 7-10.06.2010. - Paper ID: 756-ECCM14 – 2010. – C.1–8.

16. Sevastyanov V.G. Ultra-high-temperature nanocrystalline tantalum-hafnium and tantalum - zirconium mixed carbides / V.G. Sevastyanov, E.P. Simonenko, Ignatov N.A., Y.S. Ezhov, N.P. Simonenko, N.T. Kuznetsov // 14th European Conference on Composite Materials ECCM 14, Budapest (Hungary), 7-10.06.2010. - Paper ID: 525-ECCM14 – 2010. – C.1–8.

17. Симоненко Е.П. Получение порошка высокодисперсного монокарбида / Е.П. Симоненко, Н.А. Игнатов, Ю.С. Ежов, В.Г. Севастьянов, Н.Т. Кузнецов // Труды Третьей международной научно-технической конференции «Металлофизика, механика материалов, наноструктур и процессов деформирования МЕТАЛЛДЕФОРМ-2009», 3-5.06.2009. – Самара, Россия – 2009. – С.146–149.

18. Симоненко Е.П. Низкотемпературный синтез карбида тантала через транспарентный тантал- и углеродсодержащий гель / Е.П. Симоненко, Н.А. Игнатов, Ю.С. Ежов, Севастьянов В.Г. // В книге Космический вызов XXI века. Новые материалы и технологии для ракетно-космической техники. т.3., М. Торус-Пресс – 2007. – С.96–102.

19. Симоненко Е.П. Спектрофотометрическое исследование процесса получения алкоксоацетилацетонатов гафния - перспективных прекурсоров для синтеза оксидов и карбидов гафния в составе высокотемпературных композитов / Е.П. Симоненко, Н.П. Симоненко, В.Г. Севастьянов, Ю.П. Галактионов // В книге Космический вызов XXI века. Новые материалы и технологии для ракетно-космической техники. т.3. М. Торус-Пресс – 2007. – С.71–74.

20. Ежов Ю.С. Термодинамический расчет равновесий TiO₂+C и TiO₂+B₂O₃ + C для получения графитового материала, допированного карбидом и/или диборидом титана / Ю.С. Ежов, Е.П. Симоненко, В.Г. Севастьянов, Н.Т. Кузнецов // Высокочистые металлические и полупроводниковые материалы. Сборник докладов 9-го Международного симпозиума «Высокочистые металлические и полупроводниковые материалы и сплавы». – Харьков: ННЦ ХФТИ, «Константа» – 2003. – С.165–170.

21. Grashchenkov D.V. High-temperature ceramic composites stable during long-term use at temperatures up to 2000°C with a multilevel complex protection system / D.V. Grashchenkov, N.E. Shchegoleva, E.P. Simonenko, G.V. Ermakova // Polymer Science Series D - 2012. – T. 5 – N $_{2}$ 3 – C.205–207.

22. Севастьянов В.Г. Получение нанокристаллических карбидов титана, циркония и гафния с использованием золь-гель техники / В.Г. Севастьянов, Е.П. Симоненко, Н.А. Игнатов, Н.П. Симоненко, Ю.С. Ежов, Н.Т. Кузнецов // Успехи в химии и химической технологии: сб.науч.тр. Том XXIII, № 8(101) (V Международный конгресс молодых ученых по химии и химической технологии "UCChT-2009-MKXT", Москва, 10-15.11.2009) – 2009. – С.100–104.