На правах рукописи

gpu

Варнавский Сергей Александрович

РАЗБАВЛЕННЫЕ МАГНИТНЫЕ ПОЛУПРОВОДНИКИ НА OCHOBE ZnGeAs₂ И CdGeP₂

02 00 04 – Физическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Москва – 2007

Работа выполнена в Институте общей и неорганической химии им. Н.С. Курнакова РАН

Научный руководитель:	доктор химических наук, профессор Маренкин Сергей Федорович					
Официальные оппоненты:	Член-корреспондент РАН, доктор химических наук, профессор Гехман Александр Ефимович					
	кандидат физ -мат наук Трифонов Владимир Ильич					
Ведущая организация:	Московский Государственный Институт Стали и Сплавов (Технологический Университет)					

Защита диссертации состоятся «23» октября 2007 г в 11 часов на заседании диссертационного совета К 002 021 01 в Институте Общей и Неорганической Химии им НС. Курнакова РАН по адресу 119991, ГСП-1, г Москва, Ленинский проспект, д 31

С диссертацией можно ознакомиться в библиотеке ИОНХ РАН по адресу. г Москва, Ленинский проспект, д 31

Автореферат разослан «21» сентября 2007 г

Ученый секретарь диссертационного совета, кандидат химических наук, доцент

Ширу Очертянова Л И

Общая характеристика работы

Актуальность темы

В настоящее время перспективным направлением микроэлектроники становится спинтроника, ввиду того что энергетически управлять спином более выгодно, чем зарядом электрона, поэтому разработка устройств спинтроники позволит улучшить на порядки параметры существующих приборов и создать новые устройства, не имеющие до сих пор аналогов [1]

Олним ИЗ путей разработки устройств спинтроники является осуществление инжекции электронов с определенным спиновым состоянием из ферромагнетика в полупроводник Ключевой проблемой в этом случае является поиск и создание ферромагнетиков со структурой полупроводника и высокой температурой Кюри (T_c) В настоящее время большинство исследователей пытаются создать такие материалы с помощью допирования d-элементов (марганец, хром, железо) в полупроводники S1, Ge, $A^{III}B^V$ и $A^{II}B^{VI}$ Лучшие результаты были получены на пленках Ga_{1-x}Mn_xAs до x=0 06 - 0 07, молекулярно-лучевой эпитаксией, максимальной синтезированные С температурой Кюри ~160 К [2] Сравнительно недавно было обнаружено, что более высокими температурами Кюри обладают соединения A^{II}B^{1V}C^V₂, легированные марганцем [3, 4], при этом наивысшая температура Кюри 355 К. была получена для CdGeAs₂, содержавшим 3 масс % Mn [5, 6], поэтому представляет интерес рассмотреть другие соединения из этой группы, структурно более совместимые с кремнием и арсенидом галлия В теоретической работе [7] на основе расчета функциональной плотности электронного состояния соединений А^{II}В^{IV}С^V₂ с Мп было высказано предположение, что цинковые соединения, по сравнению с кадмиевыми, должны иметь более высокие температуры Кюри В пользу выбора в качестве объекта исследования ZnGeAs₂ можно отметить хорошее структурное соответствие ZnGeAs₂ с арсенидом галлия, разница в параметрах *а* их элементарных ячеек по [001] не превышает 2%, что обеспечивает возможность эпитаксии

В качестве второго объекта исследования был выбран CdGeP₂, на основе которого впервые был синтезирован высокотемпературный ферромагнетик [3] Однако эти результаты были получены на пленочных образцах, что затрудняло получение однородного распределения марганца по глубине слоя, поэтому нам представляло интерес провести исследования на объемных образцах CdGeP₂ с различным содержанием Mn

<u>Цель работы</u>

Целью настоящей работы является создание физико-химических основ получения высокотемпературных разбавленных магнитных полупроводников на основе ZnGeAs₂ и CdGeP₂ Для этого представлялось необходимым решение следующих задач

- Провести триангуляцию тройных систем Zn Ge As и Cd Ge P и экспериментально исследовать разрез Ge ZnAs₂
- Выбор оптимальных условий синтеза соединений ZnGeAs₂ и CdGeP₂
- Определить максимальную растворимость Mn в ZnGeAs₂ и CdGeP₂ и приготовить образцы, пригодные для изучения электромагнитых свойств
- Вырастить монокристаллы ZnGeAs₂, допированные Mn и Co
- Измерить в интервале температур 5 400 К магнитные и электрические свойства ZnGeAs₂ и CdGeP₂ с различным содержанием марганца

Научная новизна

Комплексом методов физико-химического анализа разработаны физикохимические основы получения высокотемпературных разбавленных магнитных полупроводников на основе ZnGeAs₂ и CdGeP₂, с температурами Кюри выше комнатных, путем создания их пересыщенных твердых растворов с Mn

Установлены условия синтеза нелегированных и легированных Mn соединений ZnGeAs₂ и CdGeP₂ исходя из анализа и экспериментального изучения тройных систем Zn – Ge – As и Cd – Ge – P

Экспериментально исследован разрез Ge – ZnAs₂ тройной фазовой диаграммы Zn – Ge – As По разрезу образуется конгруэнтно плавящееся

соединение ZnGeAs₂, окруженное эвтектиками Ge + ZnGeAs₂ и ZnGeAs₂ + ZnAs₂ Координаты эвтектик 1098 K, ~15 моль % ZnAs₂ и 1018 K, ~95 моль % ZnAs₂ соответственно Изучение микроструктуры эвтектик показало, что они относятся к эвтектикам пластинчатого типа Растворимость Ge в ZnGeAs₂ существенно ниже литературных данных и не превышает 1-2 моль % Растворимость ZnAs₂ в ZnGeAs₂ меньше 1 моль %

Максимальная растворимость Mn в ZnGeAs2 и CdGeP2 составляет ≈ 3.5 масс % и ≈ 4.5 масс % соответственно

Измерение электрических и магнитных свойств в интервале температур 5-400 К показало, что ZnGeAs₂ и CdGeP₂, допированные Mn, обладают спонтанной намагниченностью с температурами Кюри 367 и 330 К соответственно При малых магнитных полях их магнитные свойства характерны для спиновых стекол

Изучение барических зависимостей $\rho(P)$ и $R_H(P)$ соединений ZnGeAs₂ и CdGeP₂ подтверждало данные об образовании твердых растворов $A^{II}_{1-x}Mn_xGeC^{V}_2$ В частности, введение Mn упрочняло кристаллическую структуру CdGeP₂, т к на образцах, допированных Mn, фазовые превращения происходили при более высоких давлениях

Методом направленной кристаллизации по Бриджмену были выращены монокристаллы ZnGeAs₂, допированные Mn и Co Moнокристаллы ZnGeAs₂, допированные марганцем, оказались магниточувствительными при комнатной температуре

Практическая ценность

Построена часть фазовой диаграммы состояния Zn - Ge - As и разработаны методы синтеза тройных соединений $ZnGeAs_2$ и $CdGeP_2$ Выращены монокристаллы $ZnGeAs_2$ Разработана методика введения Mn в соединения $A^{II}GeC^{V}_{2}$, позволившая получить высокотемпературные ферромагнетики с температурами Кюри 367 К и 330 К, структурно совместимыми с GaAs, что представляет интерес для создания материалов спинтроники

Основные положения, выносимые на защиту

- Построение разреза Ge ZnAs₂ тройной фазовой диаграммы Zn Ge As комплексом методов физико-химического анализа
- 2 Методика синтеза ZnGeAs₂ и CdGeP₂ путем взаимодействия высокочистых $A^{II}B^{V_2}$ (где A Zn, Cd, B P, As) с Ge
- 3 Определение растворимости Mn в ZnGeAs₂ и CdGeP₂ при температуре, близкой к температуре плавления этих соединений по гипотетическому разрезу $A^{II}GeC_{2}^{V} - MnGeC_{2}^{V}$
- 4 Результаты измерений в широких интервалах температур (от 5 до 400 К) и магнитных полей (0 6 – 50 kЭ) магнитной восприимчивости, электросопротивления и постоянной Холла на нелегированных и легированных Mn образцах А^пGeC^V₂
- 5 Получение монокристаллов ZnGeAs₂, допированных Mn и Co

<u>Личный вклад автора</u> заключается в выборе направления исследования, критическом анализе имеющейся литературы, подготовке экспериментального оборудования, непосредственном проведении экспериментов по синтезу образцов, анализе результатов их идентификации, написании статей, подготовке докладов, формулировке выводов и написании диссертации

Апробация работы

Материалы диссертации докладывались на Международной конференции "Актуальные проблемы физики твердого тела" (ФТТ-2005), республика Беларусь, г Минск, 26-28 октября 2005, VI Международной научной конференции «Химия твердого тела и современные микро- и нанотехнологии», Кисловодск, 17 – 22 сентября 2006 г, третьей международной конференции по физике кристаллов «Кристаллофизика 21-ого века», 20 – 26 ноября, 2006 г Москва, МИСиС, международной конференции «Fizika-2007», г Баку, Азербайджан, международной конференции "Актуальные проблемы физики твердого тела" (ФТТ-2007), г Минск, республика Беларусь, и на ежегодных научных конференциях ИОНХ РАН в 2004, 2005 и 2007 г г

<u>Публикации</u>

По теме диссертации опубликовано 3 статьи, 2 из которых в журналах, входящих в перечень рецензируемых научных журналов и изданий ВАК РФ, 7 тезисов докладов на российских и международных конференциях

Структура и объем работы

Диссертация состоит из введения, обзора литературы, экспериментальной части, включающей обсуждение результатов, выводов, приложения и списка литературы Работа изложена на 164 страницах и содержит 16 таблиц, 75 рисунков, 171 наименование цитируемой литературы

Основное содержание работы

<u>Во введении</u> обоснованы актуальность темы и выбор объектов исследования, сформулированы цели и задачи, представлены основные положения, составляющие научную новизну и практическую значимость работы

В первой главе проведен критический анализ литературных данных по диаграммам состояния систем A^{II} – Ge – C^{V} , где A – Zn, Cd, C – As, P Рассмотрены кристаллические структуры и основные физические свойства соединений А^{II}GeC^V₂ Проанализированы результаты влияния Мп на магнитные и электрические свойства полупроводников группы A^{II}B^{IV}C^V₂, что позволило необходимые Mn. приводящие к оценить количества появлению ферромагнетизма в этих полупроводниках Рассмотрены модели, объясняющие природу ферромагнетизма в этих полупроводниках Приводятся структурные и магнитные свойства MnAs и MnP Следует отметить, что температура Кюри для этих соединений 315 и 2915 К соответственно Анализ литературных данных позволил предположить, что преимущество полупроводников A^{II}GeC^V₂ в качестве матриц для создания ферромагнетиков, по сравнению с другими группами полупроводников, состоит в большей растворимости в них d-элементов

<u>Во второй главе</u> приведены подробные описания методик идентификации образцов, измерения магнитных и электрических свойств, Оценена точность измерений с учетом аппаратурных погрешностей и степени достоверности методик

Учитывая сложность синтеза неравновесных (метастабильных) образцов. идентификация проводилась комплексом методов физико-химического анализа, включавшего в себя рентгенофазовый (РФА), дифференциальный термический рентгенофлуоресцентный анализы¹ (ДТА). микроструктурный И Рентгенофазовый анализ выполнялся в ряде научных организаций в ИОНХ РАН на ЛРОН-1, в Воронежском Государственном Университете на ЛРОН-4² и в Институте Физики Польской Академии Наук³ с помощью дифрактометра Stemens Kristalloflex D5000 Дифракционные картины расшифровывались с использованием программного комплекса PowderCell Состав образцов на содержание Mn контролировался атомно-абсорбционным анализом⁴ Общий образцов контролировался рентгеноспектральным химический состав флуоресцентным анализом ДТА проводился с помощью пирометра Курнакова С помощью сканирующих электронных микроскопов в Физическом Институте РАН и МГУ изучали состав и структуру поверхности образцов Электрические и магнитные свойства были измерены в интервале температур от 5 до 400 К и магнитных полях от 0 6 до 50 кЭ в Институте Физики Польской Академии Наук⁵, МГУ (физический факультет)⁶ и МИСиС В институте физики PAH^7 были дагестанского научного центра измерены удельное электросопротивление и коэффициент Холла при гидростатических давлениях до 5 ГПа

Третья глава посвящена изучению фазовых равновесий в тройных системах Zn - Ge - As Получение тройных соединений $A^{II}GeC_2$ можно проводить из бинарных соединений по разрезам $Ge - A^{II}C^{V_2}$ и $A^{II} - GeC^{V_2}$ Сравнение физико-химических свойств бинарных соединений $A^{II}C^{V_2}$ и GeC^{V_2} показывает, что прекурсор предпочтительнее изготавливать на основе $A^{II}C^{V_2}$ Для установления оптимальных условий синтеза ZnGeAs₂ представляло интерес исследовать разрез Ge – ZnAs₂ Paнее в работе [8] был изучен разрез

¹ Измерения проводились в ООО «Системы для микроскопии и анализа» в н с , д х н Куприяновой Т А

² Измерения проводились к х н Долгополовой Э А

³ Измерения проводились н с Домуховским В

⁴ Измерения проводились к х н Очертяновой Л И

⁵ Измерения проводились н с Шимчак Р

⁶ Измерения проводились профессором МГУ, д ф-м н Королевой Л И

⁷ Измерения проводились группой сотрудников под руководством зав лабораторией, к ф-м н Моллаева А Ю

Ge – ZnGeAs₂ Однако данные по большой растворимости германия в диарсениде германия цинка (до 20 моль % Ge) вызывали сомнения Повидимому, ошибка в определении растворимости германия вызвана тем, что дифракционные картины Ge и ZnGeAs₂ практически идентичны (рис 1)

Рис 1 – Дифракционные картины Ge и ZnGeAs₂

Нами комплексом методов физико-химического анализа был полностью исследован разрез Ge – ZnAs₂ Синтез образцов проводили путем непосредственного сплавления соответствующих количеств Ge с ZnAs₂ или ZnGeAs₂ Данные по температурам обнаружения эффектов методом ДТА и фазовому составу, полученные с помощью ΡΦΑ данные no И микроструктурных исследований, представлены в табл 1 На рис 2 показаны результаты рентгенофлуоресцентного анализа образцов №7, №10 и №11 По результатам табл 1 и рис 2 построен разрез Ge – ZnAs₂ тройной фазовой диаграммы Zn - Ge - As (рис 4)

Таблица 1 – Данные по температурам обнаружения эффектов методом ДТА и данные по фазовому составу, полученные с помощью РФА и микроструктурных исследований

Образец	Ge		ZnAs ₂		Температура		
	моль %	масс %	моль %	масс %	оонаружения эффектов, ⁰ С	Фазовый состав	
1	100	100	0	0	940	Ge	
2	94,4	85 05	5,60	14 95	-	Ge+ ZnGeAs ₂	
3	91,1	77 57	8,89	22 43	825, 875	Ge+ ZnGeAs ₂	
4	78,6	55 19	21,54	44 81	832	Ge+ ZnGeAs ₂	
5	66,0	39 65	33,90	60 35	825, 843	ZnGeAs ₂ +Ge	
6	61,03	34 58	38,97	65 42	855	ZnGeAs ₂ +Ge	
7	59,02	32 71	40,98	67 29	853	ZnGeAs ₂ +Ge	
8	54,72	28 97	45,28	71 03	851, 867	ZnGeAs ₂	
9	52 88	27 47	47,12	72 53	854, 872	ZnGeAs ₂	
10	50	25 23	50	74 77	880	ZnGeAs ₂	
11	46,4	22 66	53,46	77 34	756, 865	ZnGeAs ₂ +ZnAs ₂	
12	24,6	9 96	75,04	90 04	738, 850	ZnGeAs ₂ +ZnAs ₂	
13	13,1	4 87	86,39	95 13	745, 833	ZnGeAs ₂ +ZnAs ₂	
14	3,65	1 26	96,35	98 74	730	ZnGeAs ₂ +ZnAs ₂	
15	0	0	100	100	770	ZnAs ₂	

Рисунок 2 – Распределение элементов в образце № 7, 10 и 11

Рисунок 3 – фазовая диаграмма системы Ge – ZnAs₂

На разрезе образуется соединение ZnGeAs₂, плавящееся конгруэнтно при температуре 1153 К, что хорошо согласуется с данными [9] ZnGeAs₂ образует эвтектики с Ge и ZnAs₂ Координаты эвтектик соответственно 1098 К, ~18-20 моль % ZnAs₂ и 1018 К, ~95 моль % ZnAs₂ Изучение микроструктуры эвтектики показало, что они относятся к эвтектикам пластинчатого типа Растворимость Ge в ZnGeAs₂, установленная на основе микроструктурного и рентгенофлуоресцентного анализов при комнатной температуре, не превышала нескольких % Растворимость ZnAs₂ в ZnGeAs₂ составляла < 1 моль % Тепловые эффекты на термограммах, обнаруженные при ~1128 К, повидимому, связаны с фазовым переходом кубической модификации в тетрагональную модификацию ZnGeAs₂

В четвертой главе описан синтез и исследование электромагнитных свойств ZnGeAs₂ {Mn} Сложность синтеза заключалась в том, что для получения ферромагнитных образцов необходимо введение 1 атома Mn на 5 – 8 атомов металла (Zn, Ge) Такое количество Mn обеспечивалось путем создания пересыщенных твердых растворов, т к растворимость марганца при комнатных температурах в полупроводниках $A^{II}B^{IV}C^{V}{}_{2}$ не превышает 1 масс % Температура Кюри этих образцов соответствовала T_e MnAs ~318 K

Для получения образцов ZnGeAs₂ с содержанием марганца > 1 масс % расчет состава шихты проводили по гипотетическому разрезу ZnGeAs₂ – MnGeAs₂, в качестве исходных прекурсоров использовали высокочистые порошки монокристалла ZnAs₂, германия монокристаллического и марганца, двукратно сублимированного Синтез проводили согласно температурновременному регламенту (рис 4)

легированного Мп

Идентификацию образцов осуществляли комплексом методов физикохимического анализа Рентгенофлуоресцентный микроанализ показал, что в пределах точности определения распределение элементов по длине образца было однородным и их соотношение соответствовало составу шихты (рис 5)

Рисунок 5 – Распределение элементов в образцах по результатам рентегоспектрального – флуоресцентного анализа

Баланс элементов соответствует соотношению Zn Ge As = $1 \ 1 \ 2$, т е составу соединения ZnGeAs₂ В образцах с марганцем наблюдалось небольшое уменьшение цинка относительно стехиометрии Это свидетельствовало об

образовании твердых растворов путем замещения в кристаллической решетке ZnGeAs₂ атома Zn на атом Mn Согласно данным PФA, рентгеноспектрального флуоресцентного анализа и микроструктурных исследований, максимальная растворимость марганца вблизи температуры плавления ZnGeAs₂ составила 3 5 масс % Mn B табл 2 представлены изменения параметров кристаллической решетки ZnGeAs₂ в зависимости от содержания Mn Незначительное уменьшение объема элементарной ячейки с ростом содержания марганца, повидимому, объясняется близостью длин химической связи Zn – As и Mn – As (2 48 – 2 50 Å)

Таблица 2 – Изменения параметров кристаллической решетки ZnGeAs₂ в зависимости от содержания Mn

Образец №	образец	a	c	c/a	V
1	ZnGeAs ₂	5 672	11 153	1 966	358 81
2	ZnGeAs ₂ +1 5%Mn	5 651	11 232	1 988	358 71
3	ZnGeAs ₂ +3 5%Mn	5 654	11 197	1 980	357 95

Магнитные свойства образцов ZnGeAs₂ {Mn} измеряли с помощью СКВИД-магнетометра в интервале температур и магнитных полей 5 – 400 К и (0.6 - 50 k3)Ha рис 6 представлена температурная зависимость намагниченности M(T) образца ZnGeAs₂ с 3 5 масс % Mn в магнитном поле H = 50 kЭ На вставке к рис 6 показана зависимость M(T) в слабом магнитном поле 06 kЭ Магнитные свойства образцов ZnGeAs₂{Mn} характерны для спиновых стекол (CC) при температурах $T < T_S$ и магнитных полях менее H < 11 kЭ В более сильных магнитных полях состояние СС заменяется фазой со спонтанной намагниченностью, величина которой в 20-30 раз меньше той, которая была бы при ферромагнитном (ФМ) упорядочении всех ионов Mn Очевидно, это односвязная ФМ-фаза, в которой расположены области с фрустрированными связями Фрустрированные области и фаза СС содержат невзаимодействующие ФМ-кластеры, так как в этих областях и фазе СС при низких T наблюдается резкое возрастание намагниченности M, при этом зависимость M(T) описывается функцией Ланжевена

Рисунок 6 — Температурная зависимость намагниченности M состава ZnGeAs₂ с 3 5 масс % Mn, измеренная в магнитном поле 50 kЭ и в поле 0 6 kЭ (вставка)

ZFC-кривая образец охлаждался в отсутствие магнитного поля от температуры 400 K до 5 K, и затем при нагревании измерялась его намагниченность FC-кривая образец охлаждался в магнитном поле 0 6 kЭ от 400 K до 5 K, при этом измерялась его намагниченность

Измерения удельного электросопротивления ρ и эффекта Холла (рис 7) показали, что при T < 30 К величина ρ составов с 1 5 масс % и 3 5 масс %

выше, чем при 30 К, что обеспечивает преобладание сверхобмена, и осуществляется СС состояние Из-за неравномерного распределения ионов Мп в СС-фазе имеются изолированные ФМ кластеры, ферромагнетизм в которых осуществляется обменом через носители заряда С дальнейшим ростом Т происходит более быстрое возрастание подвижности, чем падение концентрации, что обеспечивает усиление обмена через носители заряда и рост размеров ΦM кластеров, которые при $T=T_S$ приходят в соприкосновение Происходит переход от многосвязной ФМ фазы к односвязной ФМ фазе, внутри которой располагаются микрообласти с фрустрированными связями

В качестве температуры Кюри была взята температура, полученная путем экстраполяции наиболее крутой части кривой M(T), измеренной в максимальном поле измерения 50 kЭ, до ее пересечения с осью температур Температура Кюри оказалась равной 367 К

Образцы ZnGeAs₂{Mn} обладали р-типом проводимости с концентрацией дырок $10^{19} \sim 10^{20}$ cm⁻³ и подвижностью от 0 25 – 2 5 см²B⁻¹c⁻¹

Рисунок 7 – температурная зависимость удельного электросопротивления ρ , коэффициента Холла R_h и подвижности μ ZnGeAs₂ с 1 5 масс % Mn (*a*) и 3 5 масс % Mn (*b*)

В пятой главе представлены результаты по получению И идентификации, исследованию электрических и магнитных свойств в широком интервале температур, магнитных полей и давлений образцов CdGeP₂, допированных Mn Выбор метода синтеза CdGeP₂ был основан на анализе граничных бинарных фазовых равновесий тройной системы Cd - Ge - P Согласно этому анализу, наиболее вероятными квазибинарными разрезами являются Ge – CdP₂, Cd – GeP₂, CdGeP₂ – Cd₃P₂, CdGeP₂ – GeP, Ge – Cd₃P₂ Сравнение физико-химических свойств соединений CdP₂ и GeP₂ показывает, что синтез CdGeP₂ предпочтительнее проводить по разрезу CdP₂ - Ge C целью достижения максимальной растворимости Mn в CdGeP₂ был разработан метод получения их пересыщенных твердых растворов, который заключался в том, что синтез проводили при температурах, превышающих температуру плавления в тонкостенных кварцевых ампулах, покрытых слоем определенной толщины пиролитического углерода Шихта готовилась из мелкодисперсных порошков, приготовленных из высокочистых монокристаллов CdP₂ и Ge Марганец использовался двукратно пересублимированный Расчет состава шихты проводили по гипотетическому разрезу CdGeP₂ – MnGeP₂ Скорость охлаждения составляла 10-12 град/с Идентификацию образцов осуществляли комплексом методов физико-химического анализа Рентгенофлуоресцентный микроанализ показал, что в пределах точности определения распределение длине образца было однородным и элементов по их соотношение соответствовало составу шихты

Согласно данным рентгенофазового, рентгенофлуоресцентного и металлографического анализов, максимальное количество Mn в твердом растворе составляло 4 5 масс % При увеличении содержания Mn x = 0 \rightarrow 0 09 \rightarrow 0 19 параметр кристаллической решетки CdGeP₂ уменьшался $a = 5741 \rightarrow 5738 \rightarrow 5667$ Å, что соответствует результатам [3]

Образцы CdGeP₂{Mn} обладали р-типом проводимости с концентрацией дырок $10^{16} - 10^{18}$ cm⁻³ и подвижностью ~4 0 см²B⁻¹c⁻¹ С ростом содержания Mn удельное электросопротивление уменьшалось от 27 5 до 0 72 Ом/см

На рис 8 представлена температурная зависимость намагниченности CdGeP₂ с 4 5 масс % Mn Из рис 8 видно, что переход ФМ состояния в ПМ сильно размыт и наблюдаются хвосты намагниченности Если определять температуру Кюри экстраполяцией наиболее крутой части кривой M(T) до пересечения с осью температур, то в поле H=4970 Э, T_C=330 К

Рисунок 8 – Зависимость намагниченности от температуры CdGeP₂ c 4 5 масс % Mn На вставке экспериментальная зависимость намагниченности от температуры M(T) при H = 50 кЭ (точки) и вычисленная M(T) при использовании экспериментальных величин H/T при H \leq 50 кЭ, M₀ = 5 3 ед СГСМ/г, хM_{FM} = 3 ед СГСМ/г и μ = 5 8 μ_0 (линия)

Изучение барических зависимостей $\rho(P)$ и $R_H(P)$ (рис 9) соединений ZnGeAs₂ и CdGeP₂ подтверждало данные об образовании твердых растворов $A^{II}_{1-x}Mn_xGeC^{V}_2$ Как видно из рис 9*a*, в образцах без марганца при P=3 2 ГПа происходит необратимый фазовый переход, который, согласно данным РФА, обусловлен диссоциацией соединения CdGeP₂ на фазы CdP₂ и Ge Введение Mn (рис 9*6*) упрочняло кристаллическую структуру CdGeP₂ Для образца CdGeP₂ с 4 5 масс % Mn характерен обратимый фазовый переход при P=3 5 ГПа

Рисунок 9 – Барические зависимости удельного электросопротивления (кружки) и коэффициента Холла (треугольники) для *a* - CdGeP₂, *б* - CdGeP₂ с 4 5 масс % Mn Черные точки – подъем давления (компрессия), светлые – сброс (декомпрессия)

<u>Выводы</u>

1 Разработаны физико-химические основы получения ZnGeAs₂ и CdGeP₂, допированных Mn, путем непосредственного взаимодействия высокочистых A^{II}B^V₂ (где A – Zn, Cd, B – P, As) с Ge исходя из анализа и экспериментального изучения тройных систем Zn – Ge – As и Cd – Ge – P

- 2 Комплексом методов физико-химического анализа изучен разрез Ge ZnAs₂ тройной фазовой диаграммы Zn – Ge – As В данном разрезе образуются конгруэнтно плавящиеся соединения ZnGeAs₂, обладающие малой растворимостью Ge и ZnAs₂ ZnGeAs₂ образует с Ge эвтектику с координатами 1098 K, ~15 моль % ZnAs₂ ZnAs₂ и ZnGeAs₂ образуют эвтектику с координатами 1018 K, 95 моль % ZnAs₂ Изучение микроструктуры этих эвтектик показало, что они относятся к эвтектикам пластинчатого типа
- 3 В широком интервале температур (от 300 до 1125 К) была изучена растворимость Mn в ZnGeAs₂ Установлено, что растворимость Mn возрастала с ростом температуры и достигала максимума ~4 масс % С ростом содержания Mn объем элементарной ячейки ZnGeAs₂ уменьшается, что свидетельствует об образовании твердых растворов замещения
- 4 Синтезированы твердые растворы Cd_{1-x}Mn_xGeP₂, при x=0 0 19 С ростом содержания марганца наблюдалось уменьшение параметров кристаллической решетки, что свидетельствовало об образовании твердых растворов замещения
- 5 Измерение электрических и магнитных свойств в интервале температур 5 - 400 К показало, что ZnGeAs₂ и CdGeP₂, допированные Mn, обладают спонтанной намагниченностью с температурами Кюри 367 и 330 К соответственно При малых магнитных полях их магнитные свойства характерны для спиновых стекол
- 6 Изучение барических зависимостей ρ(P) и R_H(P) соединений ZnGeAs₂ и CdGeP₂ подтверждало данные об образовании твердых растворов A^{II}_{1-x}Mn_xGeC^V₂ В частности, введение Mn упрочняло кристаллическую структуру CdGeP₂, т к образцах, допированных Mn, фазовые превращения происходили при более высоких давлениях

7 Методом направленной кристаллизации были получены монокристаллы ZnGeAs₂, допированные Mn и Co, магниточувствительные при комнатных температурах

Основные результаты были опубликованы в следующих изданиях:

- Новоторцев В М, Моллаев А Ю, Камилов И К, Арсланов Р К, Залибеков У З, Маренкин С Ф, Варнавский С А, Фазовые превращения в ферромагнитном полупроводнике Cd_{1-x}Mn_xGeP₂ при давлении до 5 ГПа, // Неорганические материалы, 2006, том 42, № 8, с 1-3
- 2 Новоторцев В М, Варнавский С А, Маренкин С Φ, Королева Л И, Демин Р В, Трухан В М, Климонский С О, Кузнецов В Д, Ферромагнитный материал CdGeP₂ Mn для спинтроники, // Неорганическая химия, 2006, том 51, № 8, с 1153-1157
- 3 Mollaev A Yu, Kamilov I K, Arslanov R K, Zalibekov U Z, Marenkin S F, Novotortsev V M, Varnavskiy S A, Phase transition in multicomponent semiconductor Cd_{1-x}Mn_xGeP₂ under hydrostatic pressure up to 7 GPA // High Pressure Research, vol 26, No 4, December 2006, 387-390
- 4 Demin R V, Koroleva L I, Marenkin S F, Novotortsev V M, Trukhan B M, Varnavskii S A, Zashcherinskii D M, Szymczak R, Baran M, Mn-doped CdGeAs₂ and CdGeP₂ chalcopyrites – novel materials for spintronics // Международная конференция "Актуальные проблемы физики твердого тела" (ФТТ-2005), республика Беларусь, г Минск, 26-28 октября 2005, с 410-412
- 5 Шабунина Г Г, Варнавский С А, Аминов Т Γ, Маренкин С Φ, Новый материал спинтроники ZnGeAs₂{Mn}, // VI Международная научная конференция «Химия твердого тела и современные микро- и нанотехнологии», Кисловодск, 17 22 сентября 2006 г, с 164 165
- 6 Скомаровский В С, Федорченко И В., Кочура А В, Варнавский С А, Маренкин С Ф, Экспресс-анализ распределения намагниченности в

объемных и пленочных образцах ферромагнитных полупроводников типа $A^{II}B^{V}$ и $A^{II}B^{IV}C^{V}_{2}$ легированных марганцем с помощью сканирующего сквид-микроскопа, // XVIII Симпозиум «Современная химическая физика», пансионат МГУ «Буревестник», г Туапсе, 22 сентября – 3 октября 2006 г, с 122 – 123

- 7 Варнавский С А, Трухан В М, Морозова В А, Маренкин С Φ, Выращивание монокристаллов ZnGeP₂, // Третья международная конференция по физике кристаллов «Кристаллофизика 21-ого века», 20 – 26 ноября, 2006 г Москва, МИСиС, с 127
- 8 Трухан В М, Маренкин С Φ, Голякевич Т В, Варнавский С А, Особенности выращивания кристаллов группы А^{II}B^{IV}C^V₂, // Третья международная конференция по физике кристаллов «Кристаллофизика 21-ого века», 20 – 26 ноября, 2006 г Москва, МИСиС, с 376 – 377
- 9 Моллаев А Ю, Камилов И К, Арсланов Р К, Залибеков У З, Новоторцев В М, Маренкин С Ф., Варнавский С А, кинетические эффекты в ферромагнитном полупроводнике Cd_{1-x}Mn_xGeP₂ при высоком давлении в области фазового перехода, сб трудов 9 Международного симпозиума «Упорядочение в металлах и сплавах» г Ростов-на-Дону пос Лоо 2006 с 59-62
- 10 Моллаев А Ю, Камилов И К, Арсланов РК, Залибеков УЗ. Новоторцев В М, Маренкин С Ф, Варнавский С А, температурные и барические зависимости удельного электросопротивления И новом ферромагнитном полупроводнике коэффициента Холла в $Cd_{1-x}Mn_xGeP_2$, международная конференция «Fızıka-2007» Баку, Азербайджан, с 36 – 39

Цитируемая литература

1 Иванов В А, Аминов Т Г, Новоторцев В М, Калинников В Т, Спинтроника и спинтронные материалы // Известия академии наук Серия химическая, 2004, №11, с 2255-2303

- 2 Ohno H, Making Nonmagnetic Semiconductors Ferromagnetic // Science, 1998, v 281, N 5379, p 951 956
- 3 Медведкин ГА, Ишибаши Т, Ниши Т, Сато К, Новый магнитный полупроводник Cd_{1-x}Mn_xGeP₂, Физика и техника полупроводников, 2001, т 35, вып 3, с 305 – 309
- 4 Choi S, Choi J, Hong S C, Cho S, Mn-doped ZnGeAs₂ and ZnSnAs₂ single crystals growth and electrical and magnetic properties, Journal of the Korean Physical Society, vol 42, February 2003, pp S739-S741
- 5 Демин Р В, Королева Л И, Маренкин С Ф, Михайлов С Г, Новоторцев В М, Калинников В Т, Аминов Т Г, Шимчак Р, Шимчак Г, Баран М, Новый ферромагнетик с температурой Кюри выше комнатной – легированный Мп халькопирит CdGeAs₂ Письма в ЖТФ 2004, т 30 №21 С 81 – 87
- 6 Новоторцев В М, Калинников В Т, Королева Л И, Демин Р В, Маренкин С Ф, Аминов Т Г, Шабунина Г Г, Бойчук С В, Иванов В А, Высокотемпературный ферромагнитный полупроводник CdGeAs₂{Mn} // Журнал Неорганической Химии, 2005, т 50, №4, с 552-557
- 7 Kent P R, Schulthess T C, CP772, Physics of Semiconductors 27th Int Conf on Physics of Semiconductors, ed J Menendez, Ch G Van de Walle, p 1369 – 1370, (2005)
- 8 Физико-химические свойства полупроводниковых веществ, справочник, под ред Новоселова А В, Лазарева В Б, Лужной Н П и др, М, Наука, 1979 г, 340 С
- 9 Горюнова НА, Соколова ВИ, Цзян Бин-Си, о растворении германия в некоторых тройных полупроводниковых соединениях // ДАН СССР -1963 - Т 152 -№2, с 363 – 366

Подписано в печать 18 09 2007 г Исполнено 19 09 2007 г Печать трафаретная

> Заказ № 734 Тираж 100 экз

Типография «11-й ФОРМАТ» ИНН 7726330900 115230, Москва, Варшавское ш, 36 (495) 975-78-56 www autoreferat ru