АКАДЕМИЯ НАУК СССР ОРДЕНА ЛЕНИНА ИНСТИТУТ ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ им. Н. С. КУРНАКОВА

На правах рукописи УДК 546.87:541.12.012

ЩЕНЁВ Александр Владимирович

ФАЗОВЫЕ РАВНОВЕСИЯ В ТРОЙНЫХ СИСТЕМАХ ИЗ ОКСИДОВ ВИСМУТА, КАДМИЯ, МОЛИБДЕНА И ВОЛЬФРАМА

(02.00.01 — неорганическая химия) (облеть в просторый в проставля в проставля

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в ордена Ленина Институте общей и неорганической химии им. Н. С. Курнакова АН СССР.

Научный руководитель: доктор химических наук, профессор В. М. Скориков.

Официальные оппоненты: доктор химических наук В. П. Орловский, кандидат химических наук В. П. Жереб.

Ведущая организация: Научно-исследовательский физико-химический институт им. Л. Я. Карпова (НИФХИ).

Автореферат разослан «К зимет 1996г.

Защита диссертации состоится « W » Умеваря 1990 г. на заседании специализированного совета К 002.37.01 по присуждению ученой степени кандидата наук в Институте общей и неорганической химии им. Н. С. Курнакова АН СССР по адресу: 117071, Москва, В-71, Ленинский пр-т, д. 31.

С диссертацией можно ознакомиться в библиотеке химической литературы АН СССР по адресу: Москва, Ленинский пр-т, д. 31.

ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность теми</u>. Поиск и создание новых материалов — неотъемлемое условие прогресса современной науки и практики. Соединения на основе оксида висмута, обладая широким комплексом физикохимических и электрофизических свейств, нашли применение в современной ньезо-, сегнетотехнике, оптоэлектронике, акустике и других отраслях техники.

Теоретической основой синтеза таких фаз является циаграмма "состав-свойство".

Для систем с участием оксида висмута (Ш) во многих случаях ксрактерна реалгзация метастабильных фазовых равновесий, в том чисде в при кристаллизации фаз из расплава. Сохранение метастабильных фаз при охлаждении заставляет учитывать эту особенность при синтеве висмутсодержащих материалов.

Актуальность диссертационной работи обусловлена тем, что на основании системного подхода в изучении двойных и тройных систем з участием оксидов висмута (Ш), кадмия, молибдена (УІ) и вольфрама поставлена задача установить комплекс взаимосвязанных фазовых взаимодействий, протекающих в этих системах.

<u>Пель работи</u> состояма в изучении фазових равновесий в двойных и тройных системах, содержащих оксид висмута (Ш) и оксиди кадмия, молибдена (УІ) и вольфрама (УІ) в стабильном и метастабильном состояниях; виявлении условий существования индивидуальных фаз в этих системах, а также поиск возможных сфер промишленного примения получаемых соепинений.

Для достижения этих целей было необходимо решить следующие запачи:

- определать состави, концентрационные и температурные границы существования и карактер плавления образурщихся фаз в тройных

- CUCTEMBX Bi203-CdO-MoO3 M Bi203-CdO-WO3;
- изучить особенности стабильного и метастабильного фазового равновесий в двойных системах CdO-моо $_3$ и $\mathrm{Bi}_2\mathrm{O}_3$ -CdO, а также в разврезах тройных систем $\mathrm{Bi}_2\mathrm{O}_3$ -CdO-моо $_3$ и $\mathrm{Bi}_2\mathrm{O}_3$ -CdO-WO $_3$;
- разработать методику количественного определелия ві^У, позволяющую определять микроколичества висмута(У) в присутствии избытка висмута(Ш);
- исследовать температурную устойчивость смешанного оксида ${\tt Bi}_2{\tt O}_4$;
- определить концентрационные и температурные границы применения составов на основе оксидов висмута (Ш) и кадмия для сращавания монокристаллов со структурой силленита;
- определить степень участия платини в фазовых равновесиях окстемы ${\tt Bi_2O_3-CdO}$.

Научная новизна. Впервые изучени фазовые равновесия в субсолидусной части тройных оксидных систем $\mathrm{Bi}_2\mathrm{O}_3$ - CdO - MoO_3 и $\mathrm{Bi}_2\mathrm{O}_3$ - CdO - Wo_3 . Построены диаграммы стабильных фазовых взаимодействий двойной системы CdO - MoO_3 , а также разрезов тройных систем CdMoO_4 - $\mathrm{3Bi}_2\mathrm{O}_3$ ° $\mathrm{2MoO}_3$. CdMoO_4 - $\mathrm{Bi}_2\mathrm{MoO}_6$; CdMoO_4 - $\mathrm{Bi}_2\mathrm{O}_3$, CdO - $\mathrm{Bi}_2\mathrm{Wo}_6$, MoO_4 - $\mathrm{$

Впервые исследована термическая устойчивость ві₂о₄. Было показано, что содержание висмута (У) линейно уменьшается с ростом температуры. При нагреве образцов ві₂0₄ в интервале температур 20-600⁰С идет приращение масси образцов вследствие присоединения оксида углерода (IV) с образованием карбоната висмутила.

Пректическая ценность представленных результатов состоит в следующем: результаты исследования взаимодействий в оксидных системах ві₂о₃-сдо-мо(w)о₃ и полученные фазовые диаграммы стабильного и метастабильного равновесий являются необходимой физико-химической основой синтеза индивидуальных фаз. Разработана методика количественного химического анализа для определения микроколи- честв ві^у в присутствии избытка ві^ш. Выявлены процессы растворения материала контейнера (платины) в продуктах взаимодействия компонентов висмутсодержащих систем. Предложени композиции, сощержащие оксиды висмута и кадмия, используемые для сращивания монокристаллов со структурой силленита и изделий из них. Выращены монокристалли ві₂о₃-3моо₃ размером до 7х10х60 мм.

Апробация работы. Основные результаты исследований докладывались на ежегодных научных конференциях ИОНХ АН СССР (1986, 1987, 1988 гг.) и ЯГПИ им.К.Д.Ушинского (г.Ярославль, 1987, 1988, 1989 гг.), XIV Менделеевском съезде по общей и прикладной химии (Ташкент, 1989 г.).

<u>Публикеция работи.</u> По теме диссертации опубликовано 5 работ, из них 4 статьи в журналах и I — тезисы доклада на XIV Менделеевском съезде.

Объем работы. Диссертация состоит из введения, трех глав, выводов и описка литературы из 124 наименований работ отечественных и зарубежных авторов. Работа изложена на 140 страницах машинописного текста, включая 15 рисунков в 22 таблиц.

основное содержание работы

Данная работа посвящена изучению фезовых равновесий в двой-

ных и тройных системах, содержащих оксид висмута (Ш) и оксиды кадмия, молиодена (УІ) и вольфрама (УІ) в стабильном и метастабильном состояниях, выявлению условий существования и способов синтеза индивидуальных фаз в этих усистемах, определению сфер вовможного применения фаз и компонентов систем.

Во <u>введении</u> дается краткая предыстория предмета исследования, определены цели и задачи работы.

Глава I посвящена систематизации литературных данных по структуре, кристаллохимии и полиморфизму оксида висмута (Ш), о фавовых равновесиях в двойных системах с участием оксидов висмута (Ш), кадмия, молиодена (УІ) и вольфрама (УІ), а также системе висмуте-кислород. Особое внимание уделено диаграммам Bi_2O_3 -моо 3 и Bi_2O_3 -чоо 3, являющимся сторонами исследуемых тройных диаграмма.

Отмечено, что несмотря на большое число работ, посвященных исследованию фазообразования в системе из оксидов висмута (Ш) и молибдена (УІ), окончательное число фіз в системе и характер их плавления остаются до конца не виясненними.

Систематизированы экспериментальные данные по фазообразованию и характеристикам фаз двойной системи Bi₂O₃-сdo. Показаны расхождения, касающиеся числа и состава фаз системы, отмечены данные, противоречащие правилу фаз Гиббса.

Проведен анализ результатов исследования системы висмут-кислород. Показано, что среди ряда фаз (BiO; Bi $_2$ O $_3$; Bi $_2$ O $_4$ и Bi $_2$ O $_5$) наиболее устойчивой является Bi $_2$ O $_3$. Отмечено существование фаз переменного состава Bi $_2$ O $_2$.3-2.4 и Bi $_2$ O $_2$.7-2.8°

Противоречия, имеющиеся в литературе, объясняются, на наш взгляд, недостаточно иолиным использованием основных методов физи-ко-химического анализа, применением исходных веществ разной степени очистки; кроме того, на разброс результатов большое влияние оказывают как развитый полиморфизм В1203, так и волючность про-

цессов метастабильного фазообразования в ряде слетем.

Глава II посвящена методике исследований. Исходными веществами были оксиды висмута (Ш), кадмия, молибдена (УІ) и вольфрама (УІ) марок "ос.ч.". Образци систем составляли через 0,5; I,0; 2,0 и 5,0 мол.%. Анализ проводили методами дифференциально-термического (ДТА), рентгенофазового (РФА), локального рентгеноспектрального (ЛРСА), фазового химического анализов.

Отжиг образцов проводили в платиновых тиглях вследствие высокой реакционной способности ${\rm Bi}_2{\rm O}_3$ при высоких температурах. Температуру отжига подбирали экспериментально, по данным предварительного ДТ/ она составляла ${\rm O}_*$ 8- ${\rm O}_*$ 95 ${\rm T}_{\rm BR}$ образцов. Полноту прохождения твердофазных реакций контролировали РФА и ДТА.

Дифференциально-термический анализ проводили на дериватографе "мом-103", используя платиновые тигли с крышками. Навеска составляла 0,5-1,0 г для ДТА и до 3,0 г для ДТГ. В качестве эталона использовали прокаленный Al₂0₃. Скорость нагревания обычно составляла 5 град/мин и при необходимости менялась от I до I5 град/мин. Температуру определяли с точностью ±3°С, изменение массы — с максимальной точностью ±0,5 мг.

РФА использовали для выяснения числа фаз и их полиморфных модификаций, а также для определения параметров ячейки монокристаллов и индивидуальных фаз. Исследования проводились на дифрактометре "Geigerflex" с использованием $Cu\ K_d$ —излучения (иі-фильтр) в интервале углов 20 $IO-I4O^O$.

Для определения химического состава фаз и распределения элементов по поверхности кристаллов использовали ЛРСА, который проводили на микроанализаторе MS-46.

Химический анализ образцов проводили на моны cd^{2+} , Bi^{3+} - комплексонометрически , а на моны мо $^{6+}$ и w^{6+} - гравиметрически . Для определения висмута(У) нами была разработана методика объем-

ного определения ві^У в присутствии избитка ві^{Ш ж}). Сущность методики состоит в восстановлении висмута (У) до висмута (Ш) клороводородной кислогой в присутствии избитка иодида калия с последующим титрованием образующегося иода тиосульфатом натрия в присутствии
крахмала. Удовлетворительние результати получени при содержании в
навеске 0,5-I,0 мг ві^У, ощибка определения составляла 0,3-0,5%.
Влияние присутствия в пробе висмута (Ш) на точность определения
висмута (У) экспериментально не обнаружено.

В Главе Ш изложени результати работи и их обсуждение.

Двойная система из оксидов кадмия и молибдена (УІ) является стороной тройной системы ${\rm Bi}_2{\rm O}_3$ -CdO-MoO $_3$. Единственным соединением, образующимся в двойной системе, является нормальный молибдат кадмия ${\rm Cdmoo}_4$, конгруэнтно плавящийся при ${\rm II6O}^\pm 3^{\rm O}{\rm C}$. Эвтектика со стороны оксида кадмия имеет состав ${\rm Cdo}$ — 58,0 и ${\rm Moo}_3$ — 42,0 мол.%, ${\rm t_{IIR}}$ = ${\rm III6}^{\rm O}{\rm C}$, эвтектика со стороны оксида молибдена содержит 27,5 мол.% ${\rm Cdo}$, 72,5 мол.% ${\rm Moo}_3$ и плав тся при 746°C. Попнтки синтезировать молибдать кадмия с соотношением ${\rm Cdo/Moo}_3$ больше единици (по аналогии с молибдетами цинка или овинца) оказались безуспешными.

Система ві₂0₃-сао является общей для тройних систем. Нами впервые были отмечены процесси метастабильного фазообразования, протекающие в системе. Метастабильное состояние достигается перегревом образцов на I30-I50°C выше температуры илавления и последующем его охлаждением. По результатам исследования построена диаграмма фазовых равновесий системы ві₂0₃-сао в метастабильном состоянии (рис, I). Образцы, содержащие от 2 до I2-I4 мол. Сао являются двухфазными и состоят из 4-ві₂0₃ и β-твердого раствора. Эти образцы, закаленные от 740°C, представляют собой высокотемпе-

ж) Совместно с Н.Н.Руновим (ЯТПИ, г.Ярославль).

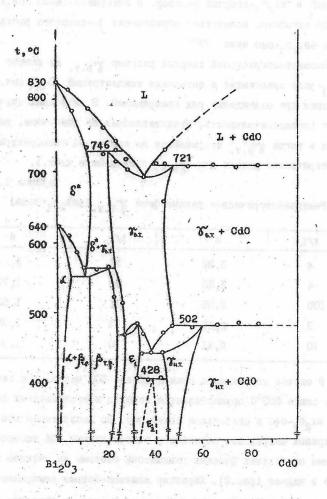


Рис. I. Фазовая диаграмма состояния системы ${\tt Bi_2O_3-CdO}$ при метастабильном характере взаимодействия.

ратурный $S^{-*}_{-Bi_2}o_3$ -твердый раствор. В интервале 14-20 мол.% с с образцы однофазны вследствие образования β -твердого раствора на основе $6Bi_2o_3$ -с с ниже 579° С.

Высокотемпературный твердый раствор $\chi_{B.T.}$ на основе 58_{12} о $_3$ -зодо существует в интервале концентраций 20-45 мол.% сдо, испытывая при охлаждении ряд превращений. В некоторых случаях, вся их последовательность, представленная на диаграмме, не реализуется и тогда $\chi_{B.T.}$ сохраняется до комнатной температуры. Рентеренометрические данные для $\chi_{B.T.}$ приведены в табл. I.

Таблица І. Рентгенометрические данные фазы $\gamma_{\text{B.т.}}$ (5 Bi_2O_3 °3CdO)

 d	I/I _o		d	I/I _o
2,14	24		3,32	4
I,75	42		3,23	 4
1,52	II .	1.11	3,05	100
I,38	4		2,67	3
I,35	10		2,41	10

В случае длительного отжита (более 500 часов) при температуре не свише 600° С осуществляется переход метастабильных фаз системи $\text{Вi}_{2}\text{O}_{3}$ -Сdo в стабильное состояние. По результатам исследования кривых нагревания образцов с учетом данных РФА построена дивеграмма стабильных фазовых равновесий системи из оксидов висмута (Ш) и кадмия (рис.2). Характер взаимодействия компонентов системи по сравнению с метастабильным состоянием достаточно упрощатеся.

Соединению $6 \text{Bi}_2 \text{O}_3$ -CdO отвечают две температурные границы: 613^{OC} — образование и около 750^{OC} — распад этой фази по схеме $6 \text{Bi}_2 \text{O}_3$ -CdO — δ т.р. + L.

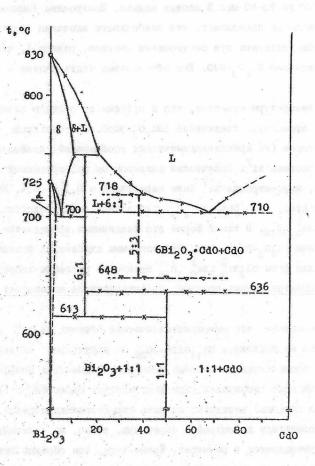


Рис. 2. Система ${\rm Bi}_2{\rm O}_3$ -CdO в состоянии стабильного фазового равновесия (пунктиром и знаком ${\rm V}$ отмечены температурные границы существования соединения ${\rm 5Bi}_2{\rm O}_3{\rm \circ}3{\rm CdO}$).

Температурная горизонталь при 636°C прослеживается от фазы 6Ві₂0_{3°}CdO до 75-8О мол.% оксида кадмия. Построение тамммановского треугольника показывает, что наибольшего значения величины энфорфектов достигают при соотношении оксидов, равном I, что отвечает соединению Ві₂0_{3°}CdO. Его образование подть рждают и данные РФА.

Из литератури известно, что в системе из оксидов висмута (Ш) и кадмия существует соединение $5\mathrm{Bi}_2\mathrm{O}_3$ -3CdO со структурой силиенита, которое (из кристаллохимических соображений) должно иметь в своем составе Bi^{V} . Химическим анализом по разработанной нами методике, концентрация Bi^{V} била определена в 3, I масс.%. Из этого факта следует, что фаза $5\mathrm{Bi}_2\mathrm{O}_3$ -3CdO должна быть представлена как $\mathrm{Cd}_3\mathrm{Bi}_{9,7}^{\mathrm{H}}\mathrm{Bi}_{0,3}^{\mathrm{V}}\mathrm{O}_{18}$. В такой форме это соединение принадлежит тройной системе $\mathrm{Bi}_2\mathrm{O}_3$ - $\mathrm{Bi}_2\mathrm{O}_5$ -сdo. На диаграмме стабильных фазовых равновесий для фазы $\mathrm{Cd}_3\mathrm{Bi}_{9,7}^{\mathrm{V}}\mathrm{Bi}_{0,3}^{\mathrm{V}}\mathrm{O}_{18}$ пунктиром показаны температурные и концентрационные границы, проектирующиеся на сторону $\mathrm{Bi}_2\mathrm{O}_3$ -сdo.

Установлено, что монокристаллические образцы ${\rm Cd}_3{\rm Bi}_{9,7}^{\rm Fi}{\rm Ei}_{0,3}^{\rm V}{\rm O}_{18}$ выращенные на подложках ${\rm Bi}_{12}{\rm Si}({\rm Ge}){\rm O}_{20}$ со структурой силленита, обладают аномальными значениями электропроводности и коэффициента термического расширения. При дилатометрии около $640^{\rm OC}$ (до плавления образца) наступает явление термострикции образца, когда он, вследствие перестройки структуры, резко, на величину около 10%, уменьшается в размерах. Кроме того, эти образцы имеют электропроводность очень высокую для соединений со структурой силлените. Для ${\rm Cd}_3{\rm Bi}_{9,7}^{\rm Bi}{\rm O}_{3,3}{\rm O}_{18}$ $^{\rm Co}={\rm I}_3{\rm S\cdot IO}^{\rm CI}$ ом $^{\rm Co}$, что на ${\rm IO}^{\rm IO}_{\rm CIO}$ больше, чем для остальных силленитов.

Система Bi_2O_3 -MoO $_3$ также является стороной тройной дваграмми. Она была исследована нами методами ДТА и РФА в области концентраций 20-27 и 50-70 мол.% Bi_2O_3 с интервалом O_3 5- I_3 0 мол.%. Сое-

динению $3Bi_2O_3^*2MoO_3$ на диаграмме четко соответствует температурный максимум при $975^{\pm}2^{\circ}C$. Эвтектика между $3Bi_2O_3^*2MoO_3$ и $3Bi_2O_3^*MoO_3$ имеет состав 63 мол.% оксида висмута (Ш) и 37 мол.% оксида молибдена (УІ) и плавится при $960^{\circ}C$. ДТА образцов системы в области концентраций 2C-27 мол.% Bi_2O_3 показывает температурный максимум, соответствующий фазе $Bi_2O_3^*3MoO_3$, которая была получена нами в виде монокристаллов размером до 7xIOx6O мм. Таким образом, имеющиеся факти указывают на то, что в системе $Bi_2O_3-MoO_3$ существуют три фазы, плавящиеся конгруэнтно: $3Bi_2O_3^*MoO_3$, $3Bi_2O_3^*2MoO_3$ и $Bi_2O_3^*3MoO_3$.

Тройная сготема $\rm Bi_2O_3$ -CdO-MoO_3 в отсутствие тройных конгруэнтных соединений сингулярной триангуляцией по Н.С.Курнакову
(рис.3) делится на простые треугольники квазибинарными разрезами $\rm CdO-3Bi_2O_3^*MoO_3$ и $\rm CdMoO_4-3Bi_2O_3^*2MoO_3$. Эти разрезы, а также разрезы $\rm CdMoO_4-Bi_2MoO_6$, $\rm CdMoO_4-Bi_6MoO_{12}$ и $\rm CdMoO_4-Bi_2O_3^*2MoO_3$ были исследованы нами при помощи $\rm PDA$, а часть разрезов и методами ДТА, ЛРСА и др.

Резрез Ссиоо 4-3 Ві 203-2 МоО3 является простым эвтектическим (рис. 4). Отличительной особенностью взаимодействия компонентов является ретроградный жарактер растворимости $3 Ві_2 O_3 \cdot 2 MoO_3$ в молифате кадмия, причем наибольшая величина этой растворимости достигает 22 мол. % при 975-1000°С. Эвтектика системы расположена при 43,0 мол. % $3 Ві_2 O_3 \cdot 2 MoO_3$ и плавится при 901°С. Температура 963°С соответствует высокотемпературному $\mathcal{E} = \mathcal{E}'$ превращению $3 Bi_2 O_3 \cdot 2 MoO_3$. Несмотря на то, что разрез $6 MoO_4 - Bi_2 MoO_6$ расположен в непосредственной близости от разрез $6 MoO_4 - 3 Bi_2 O_3 \cdot 2 MoO_3$. жарактер взаимодействия их сильно отличается как числом фаз, так и сложностью фазовых превращений.

Фазовая диаграмма разреза ${\tt CdMoO_4-Bi_2MoO_6}$ представлена на рис.5. В солидусной части образуется соединение ${\tt Bi_4CdMo_3O_{16}}$

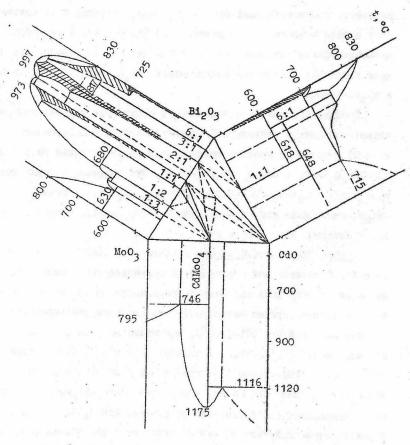


Рис. 3 . Концентрационный треугольник системы $^{\rm Bi}2^{\rm O}_3$ -CdO-MoO $_3$.

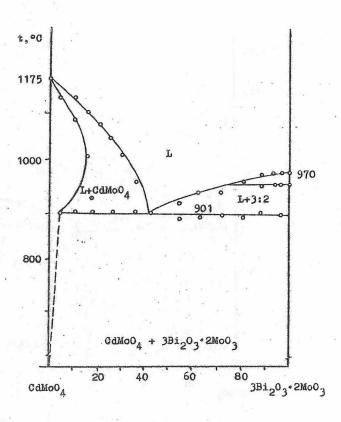


Рис. 4. Фазовая диаграмма разреза Ссимо04-3Ві203°2МоО3.

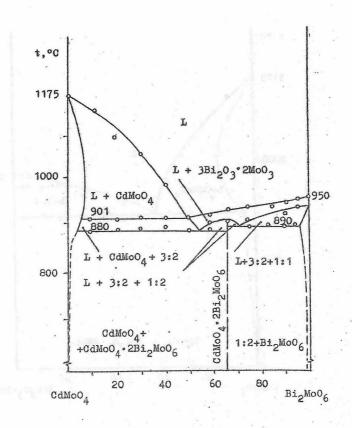


Рис. 5. Фазовая диаграмма разреза СdMoO₄-Bi₂MoO₆.

(GdMoO $_4$ °2Bi $_2$ MoO $_6$). Фаза такого состава появляется в образцах (по данным РФА) уже после отжига в течение I5-2O часов при 750-800°C. Карактер плавления тройной фазы инконгруэнтный, на что указывают два эндотермических эффекта при 903 и 920°C на кривой нагревания образца. Первый из эффектов состветствует процессу распада ${\rm CdMoO}_4$ °2Bi $_2$ MoO $_6$ — L + 3Bi $_2$ O $_3$ °2MoO $_3$, а второй — ликвидусу системы. Эвтектика разреза имеет состав 49,0 мол.% ${\rm CdMoO}_4$ и 51,0мол.% ${\rm Bi}_2$ MoO $_6$ и плавится при 901°C.

Общим с разрезом ${\rm CdMoO_4-3Bi_2O_3^*2MoO_3}$ является ретроградная растворимость ${\rm Bi_2MoO_6}$ в ${\rm CdMoO_4}$, хотя величина ее в 2-2,5 раза меньше.

Разрез Ссио Ω_4 -Ві $_2\Omega_3$ в исследованной области О-30 мол.% Ві $_2\Omega_3$ характеризуется значительным (на $200^{\rm O}$) снижением температуры плавления молибдата кадмия при незначительных (5-I5 мол.%) добавжах оксида висмута. Такое положение кривой ликвидуса нозволяет существенно упростить способ получения монокристаллов ссио Ω_4 при выращивании их из раствора в расплаве ві Ω_3 по Чохральскому.

Разрезн Сао_3 $^{1}2^{0}$ 2° $^{1}4^{0}$ 3; В1 $^{2}2^{0}$ 3° $^{1}2^{0}$ 3° $^{1}4^{0}$ 3° $^{1}2^{0}$ 3° $^{1}4^{0}$ 3° $^{1}2^{0}$ 3° $^{1}4^{0}$ 3° $^{1}2^{0}$ 3° $^{1}4^{0}$ 3°

Синтулярной триангуляцией по H.C.Курнакову тройная система $\text{Bi}_2\text{O}_3=\text{CdO}=\text{WO}_3$ делится на простые треугольники оледующими квазибинарными разрезами: $\text{CdO}=3\text{Bi}_2\text{O}_3\cdot\text{WO}_3$. $\text{CdO}=\text{Bi}_2\text{O}_3\cdot\text{WO}_3$ и $\text{CdWO}_4-\text{Bi}_2\text{O}_3\cdot\text{WO}_3$. Нами были исследованы эти разрезы, а также частично политермический разрез $\text{Bi}_2\text{O}_3\text{-CdWO}_4$. Концентрационный треугольник системы $\text{Bi}_2\text{O}_3\text{-CdO}=\text{WO}_3$ приведен нэ рис.6.

При взаимодействии компонентов в квазибинарном разрезе сво- $-Bi_2WO_6$ образуется соединение $3CdO \cdot 2Bi_2WO_6$, имеющее конгруэнтный характер плавления при $995\dot{}^{1}3^{0}$ С. Эвтектики тройной фазы с исходными компонентами расположены при 33.5 мол.% Bi_2WO_6 (978^{0} С) со сто-

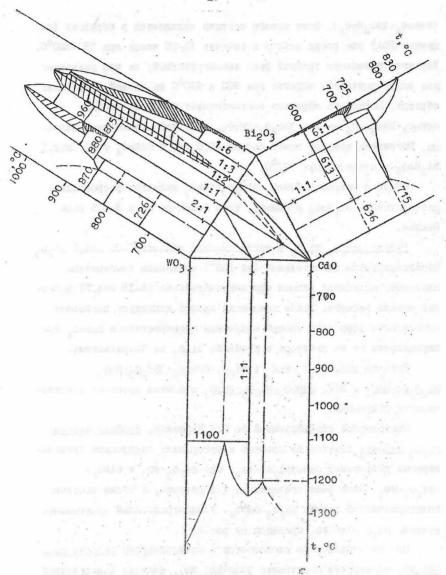


Рис. 6. Концентрационный треугольных системы ${\rm Bi}_2{\rm O}_3{\rm -GdO-WO}_3$.

роны оксида надмия и при 47,5 мол.% $\mathrm{Bi}_2\mathrm{wo}_6$ (t = 937°C) со стороны вольфрамата висмута. Температуре 937°C соответствует наибольшая по величине область гомогенности (IO-I2%) соединения $\mathrm{3CdO} \cdot 2\mathrm{Bi}_2\mathrm{wo}_6$, испытывающего полиморфное превращение при $\mathrm{886}^{\mathrm{O}}\mathrm{C}$. Рентгенометрические двиные соединения $\mathrm{3CdO} \cdot 2\mathrm{Bi}_2\mathrm{wo}_6$, имеющего тетрагональную структуру, приведены в $\mathrm{TaGn}.2$.

Теблица 2. Рентгенометрические данные 30d0-2Bi $_2$ W0 $_6$

I/I _o	d	1/1	d
2	4,6I	3	2,132
2	3,792	25	1,900
3	3,445	19	1,855
100	3,098	24	I,624
80	3,034	15	I,584
40	2,682	North 8 4 El	1,552
30	2,621	6	1,516
5	2,464	3 7	I,482
4	2,414		La KETPTION OF

<u>Разрез CdO-Bi6WO12</u>, согласно результатам исследований, простой, эвтектического типа. Температурные горизонтали при 796 и 870°C соответствуют эвтектике системи и полиморфному превращению Вi6WO12.

Разрез Само₄-Ві₂WO₆ расположен в тройной системе Ві₂О₃-СаО--WO₃ внаногично разрезу СамоО₄-Ві₂МоО₆ в системе из оксидов вио-мута (Ш), кадмия в молибдена (УІ), но характер фазовых взаимодействий отличается от молибденсодержащей системы. По данным РФА, все образци разреза содержат в низкотемпературной области только исходные компоненты. На кривых нагревания отожженных образцов,

начиная с концентрации $\mathrm{Bi}_2\mathrm{WO}_6$, равной $\mathrm{I8}$,5 мол.%, появляются два эффекта, коррелирующие по интенсивностям, — при 981 и $\mathrm{IO25^0C}$. Кроме этого, эвтектическая горизонталь, по данным ДТА, прослеживается только от 35 мол.% $\mathrm{Bi}_2\mathrm{W}_{-6}$. Совокупность этих данных позволяет интерпретировать их адинственным образом — предположить существование в узком температурном интервале (44^{O}) тройной фазы, содержащей около 33 мол.% $\mathrm{Bi}_2\mathrm{WO}_6$, т.е. $\mathrm{2CdWO}_4$ - $\mathrm{Bi}_2\mathrm{WO}_6$. Закалкой образцов от указанного интервала температур получить тройную фазу не удается. РФА таких образцов показывает лишь наличие исходных вольфраматов.

Температурная горизонталь 951°C отвечает полиморфизму ві₂wo₆. Для разреза СdWo₄-ві₂wo₆ показано наличие метастабильного характера фазовых взаимодействий. При записи кривых отлаждения образцов, перегретых на I30-I50°C, установлено, что количество температурных эффектов уменьшается, характер фазовых взаимодействий упрощается. На метастабильной диаграмме остаются лишь те эффекты, которые соответствуют ликвидусу в эвтектике разреза, а также полиморфному превращению ві₂wo₆, котя температура эвтекти-ки снижается с IOI6 до 998°C, полиморфизм наблюдается при 850 вместо 951°C.

Общим, как для стабильного, так и для метастабильного взаимодействия в системе СаWO4-Ві2WO6 является неизменность состава
эвтектики, а также наличие узких (до 2-4 мол.%) областей гомогенности вблизи исходных компонентов.

Рассмотрено взаимолействие платины с компонентами в фазами системы $\mathrm{Bi}_2\mathrm{Q}_3$ -сао в области 35-55 мол.% оксида кадмия. При взаимодействии расплава фазы $5\mathrm{Bi}_2\mathrm{Q}_3$ -3CdO с платиной образуется коричневый порошок, содержащий, по данным ЛРСА, 45-50 масс.% кадмия и 34-37 масс.% платины, что соответствует войному оксиду $\mathrm{Cd}_2\mathrm{Pto}_4$.

В аналогичном опите, но при соотношении оксидов висмута и

кадмия, равном I:I, били получени монокристаллические "уси" ${\rm cd_2Pto_4}$ длиной до 300 мкм и шириной 30-50 мкм. Вхождения висмута в состав двойных платиновых оксидов, по данным ЛРСА, не обнаружено, однако, в некоторых опытах из расплава выделяются пластинки (около 0,5-I,0 ${\rm mm}^2$) металлической платини, образовавшиеся, по-видимому, при диссоциации двойного висмут-платинового оксида, вследствие его меньшей, чем у ${\rm cd_2Pto_4}$, термической устойчивости.

Смещенный оксид висмута Bi_2O_4 (Bi_2O_3 : Bi_2O_5) является одной из фаз системы висмут-кислород, содержащей Bi^T . Ранее было покавно вхождение висмута (У) в некоторые фазь системы из оксидов висмута и кадмия. Для использования Bi_2O_4 в качестве исходного компонента при синтезе образцов, содержащих Bi^Y , необходимо исследовать его термическую устойчивость.

Впервые было установлено, что с ростом температуры соотношение $\text{Bi}^{\text{III}}/\text{Bi}^{\text{y}}$ в Bi_2O_4 увеличивается, а каждому значению температуры соответствует определенное количество Bi^{y} , причем наблюдается линейная зависимость содержания Bi^{y} от температуры и времени отжига образцов Bi_2O_4 (рис. 7).

При проведении ДТА, в также при длительном (более 500 часов) отжите на воздухе навесок $\mathrm{Bi}_2\mathrm{O}_4$ показано, что масса образцов не-изменно увеличивается. Химическим анализом било установлено, что приращение массы идет за счет взаимодействия $\mathrm{Bi}_2\mathrm{O}_4$ и оксида углерода (IУ) с образованием карбоната висмутила ($\mathrm{Bi}_2\mathrm{O}_2$)СО3. На рис.8 показана зависимость скорости достижения насыщения образцов CO_2 от времени и температуры.

По результатам исследований были разработан... и успешно опробованы составы на основе оксидов юдмия и высмута для сращивания монокристанлов соединений со структурой силленита и изделий из них.

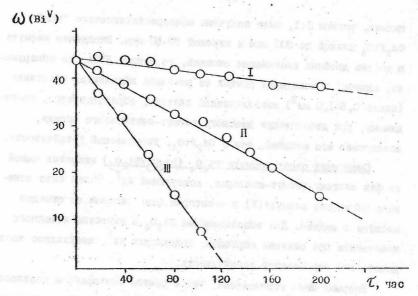


Рис. 7. Зависимость содержания ${\rm Bi}^{\rm V}$ от температуры и времени отжига образцов ${\rm Bi}_2{\rm O}_4$: I - 200, II - 250, Ш - $300^{\rm O}{\rm C}$.

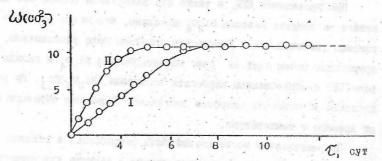


Рис. 8. Зависимость содержания ${\rm CO}_3^{2-}$ в образцах ${\rm Bi}_2{\rm O}_4$ от времени: ${\rm I}$ – 200, ${\rm II}$ – 300°C.

BHBOIH

- I. Методами физико-жимического внаима (ДТА, РФА, ЛРСА и др.) впервые изучены фазовые равновесия в тройных системах ${\rm Bi}_2{\rm O}_3$ --GdO-MoO $_3$ и ${\rm Bi}_2{\rm O}_3$ -GdO-WoO $_3$, в результате чего:
 - показано существование тройных соединений $3\text{CdO} \cdot 2\text{Bi}_2\text{WO}_6$, $\text{Bi}_2\text{O}_3 \cdot \text{CdMoO}_4$ и $\text{CdMoO}_4 \cdot 2\text{Bi}_2\text{MoO}_6$. Фаза $3\text{CdO} \cdot 2\text{Bi}_2\text{WO}_6$ конгруэнтно плавится при 995°C и испытывает полиморфный переход около 880°C . Фаза $\text{Bi}_2\text{O}_3 \cdot \text{CdMoO}_4$, соразующая широкую (до 2Omon.%) область δ -твердых растворов, инконгруэнтно плавится при 930°C . Фаза $\text{CdMoO}_4 \cdot 2\text{Bi}_2\text{MoO}_6$ существует лишь в солидусной части и распадается при 900°C ;
 - проведена тривнтуляция тройных систем, изучены квезибинарные разрезы ${\rm CdMoO_4-3Bi_2O_3 \cdot 2MoO_3}$, ${\rm CdO-Bi_6Wo_{12}}$, ${\rm CdMoO_4-Bi_2Wo_6}$, ${\rm CdO-Bi_6Wo_{12}}$, ${\rm CdWo_4-Bi_2Wo_6}$, а также разрезы ${\rm CdMoO_4-Bi_2O_3 \cdot 2MoO_3}$, ${\rm CdMoO_4-Bi_2MoO_6}$ и, частично, разрезы ${\rm Bi_2O_3-CdMo(W)O_4}$.
- 2. Исследованы двойные системы ${\tt Bi_2O_3-CdO_6}$ СdO-MoO₃ и ${\tt Bi_2O_3-MoO_3}$:
 - уточнена стабильная фазовая диаграмма системы Bi_2O_3 -CdO: показано, что соединения $6Bi_2O_3$ -CdO и Bi_2O_3 -CdO существуют
 лишь в солвдусной части при температурах 6I3-749 и до 636^{O} С,
 соответственно. Впервые установлено, что соединение $5Bi_2O_3$ -3CdO не принадлежит двойной системе, а. в соответствии с составом $Cd_3Bi_{30}^{III}$, $7Bi_{00}^{II}$, $3O_{18}$, принадлежит тройной систем
 ме Bi_2O_3 - Bi_2O_5 -CdO. Охлаждением образцов системы от расплава до 700^{O} С с последующей закалкой, а также при выращивании из расплава получена фаза состава $Cd_3Bi_{30}^{III}$, $7Bi_{00}^{I}$, $3O_{18}$ со структурой силленита (a = I0, 20 Å) и аномально высокой электропроводностью G = I, $5 \cdot IO^{-I}$ Ом $^{-I}$ -см $^{-I}$, что на IO-I2 порядков
 вышо, чем у остальных фаз с аналогичной структурой;

- впервые установлены и исследованы процессы метастабильного фезообразования в системе $\mathrm{Bi}_2\mathrm{O}_3$ -CdO, построена метастабильная фезовая диаграмма системы. Отмечено существование узких (2-6 мол.%) областей низкотемпературных \mathcal{A} , \mathcal{A} в \mathcal{A} т. твердих растворов и широкой (около 25 мол.%) области \mathcal{A} т. твердого раствора;
- впервые исследовано взаимодействие компонентов и построена диаграмма системы GdO-MoO₃. Показано, что единственным двойным соединением этой системы являет пормальный молибдат кадмия GdMoO_A;
- уточнены фазовые взаимодействия компонентов в системе $\mathrm{Bi}_2\mathrm{O}_3$ $-\mathrm{MoO}_3$. Характер плавления соединений $\mathrm{3Bi}_2\mathrm{O}_3$ $\mathrm{2MoO}_3$ и $\mathrm{Bi}_2\mathrm{O}_3$ $\mathrm{3MoO}_3$ определен нами как конгрузнтный. Построена уточненная фазовая диаграмма системы $\mathrm{Bi}_2\mathrm{O}_3$ - MoO_3 ;
- выявлено растворение платины в продуктах взаимодействия компонентов системы ССО-В1203.
- 3. Аналитическими методами определено существование висмута в двух степенях окисления в соединении ${\rm Cd_3Bl}_{9.7}^{\rm Bl}_{0.3}^{\rm y}_{0.8}$. Для количественного определения ${\rm Bi}^{\rm y}$ разработана методика, нозволяющая определять висмут в обеих степенях окисления.
- 4. Для смешанного оксида висмута ві₂0₄ впервые установлена четкая корреляция между температурой и соотношением ві^Ш/ві^У. Показано, что концентрация ві^У при отжиге образцов на воздуже обратно пропорциональна температуре отжига, а процесс пережода ві^У ві^Ш является необратимым. Взаимодействие ві₂0₄ с оксидом углерода (ІУ) происходит во всем интервале концентраций и температур с образованием карбоната висмутила ві₂0₂00₃.
- Предложены составы на основе оксидов висмута (Ш) и кадмия, позволяющие сращивать монокристалие соединений со структурой силленита и изделия из них.

Основное содержание диссертации изложено в работах:

- І. Щенев А.В., Скориков В.М., Каргин Ю.Ф. Фазовие равновесия в системе из оксидов висмута, кадмия и вольфрама / В сб.: Физи-ко-химические исследования равновесий в растворах. Ярославль, 1986. С.21-25.
- 2. Щенев А.В., Скориков В.М., Каргин Ю.Ф. Система Сао-моо₃ // Ж. неорган.химии. 1987. Т.32. № 3. С.1099-1100.
- 3. Щенев А.В., Скориков В.М., Каргин Ю.Ф. Фазовые равновесия в системе из оксидов висмута, кадмия и молибдена / В сб.: Физи-ко-химические исследования равновесий в растворах. Ярославль, 1987. С.78-85.
- Щенев А.В., Скориков В.М., Кергин Ю.Ф. Исследование метастабильного равновесия в системе Ві₂О₃-СdO // Ж.неорган.химии. 1988. Т.33. № 3. С.72I-723.
- 5. Рунов Н.Н., Каргин Ю.Ф., Щенев А.В. Изучение термической устойчивости смещанного оксида Ві₂о₄ / Тез.дока. ХІУ Менделеевского съезда по общей и прикладной химии. М.: Наука, 1989. С.586.

Подписано в печать I2.I2.89. АК 09536. Формат 60X84 I/16. Бумага тип. № I. Офсетная печать. Печ.л. I,0. Тираж I00. Заказ 3454. Бесплатно. Типография Ярославского политехнического института. Ярославль, ул. Советская, I4a.