АКАДЕМИЯ НАУК СССР

ОРДЕНА ЛЕНИНА ИНСТИТУТ ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ им. Н. С. КУРНАКОВА

На правах рукописи

УДК 546.47'48'18'19:541.123.2

ГРИНБЕРГ Яков Хаскелевич

Р-Т-Х ФАЗОВЫЕ РАВНОВЕСИЯ И ТЕНЗИМЕТРИЧЕСКОЕ СКАНИРОВАНИЕ ОТКЛОНЕНИЯ ОТ СТЕХИОМЕТРИИ В КРИСТАЛЛАХ В ПОЛУПРОВОДНИКОВЫХ И ОКСИДНЫХ СИСТЕМАХ

02.00.01 — неорганическая химия 02.00.04 — физическая химия

Автореферат диссертации на соискание ученой степени доктора химических наук

Работа выполнена в ордена Ленина Институте общей и неорганической химии им. Н. С. Курнакова АН СССР.

Официальные оппоненты: академик Г. П. ШВЕЙКИН, член-корреспондент АН СССР Н. Т. КУЗНЕЦОВ, доктор химических наук, профессор В. П. ЗЛОМАНОВ

Ведущая организация — Московский Институт тонкой химической технологии им. М. В. Ломоносова

Защита состоится « » 1989 г. в 11.00 на заседании специализированного совета Д 002.37.01 при Институте общей и неорганической химии им. Н. С. Курнакова АН СССР по адресу: 117907, ГСП-1, Москва, Ленинский проспект, 31.

С диссертацией можно ознакомиться в библиотеке ИОНХ АН СССР.

Автореферат разослан « » 1989 г.

Ученый секретарь специализированного совета, кандидат химических наук

М. А. ГЛУШКОВА

OGMAH XAPAKTEPUCTUKA PABOTM

Актуальность проблемы. Результатом развития термодинамики обратимых процессов как фундаментальной науки явилось ооздание - йинэшонгоо жинаоноо хонарит кинаосворовор под ображити -фундаментального уравнения, условия равновесия и условия устойчивости - для решения большинства проблем, связанных о равновесиями. Дальнейшие термодинамические исследования в основной своей части относятся к приложениям учения о равногесии в важнейших областях новой техники: н кимической промышленности, технология топлив, несрганических материалов и т.д. С помощью термодинамических методов определяют онтимальные условия направленного синтеза и максимальный выход в химических процессах, области устойчивости веществ и эффективность технологических систем. Так термодинамика как прикладная наука становится непосредственной производительной силой. Настоятельные технические потребности придели к созданию и продолжающемуся осуществлению в СССР и США многолетних правительотвенных программ по измерению и табулированию термодинамических овойств веществ, вопедних в банк термодинамических данных ИВТАН-ТЕРМС и публикуемых в периодических справочниках "Термодинамиче-OKNE CHONOTER MHAMBALVAILHEN BEGEOTE" M "JANAF Themschemical Tables".

Свойства многих веществ в кристаллическом состоянии (в первую очередь, полупроводников) резко изменяются в зависимости от состава, часто в пределах достаточно узкой (порядка 0,1 ат.%) облясти гомогенности. А состав кристалла эпределяется условиями получения — температурой, давлением, составом кристаллизуемой матрицы. Поэтому одной из центральных проблем химии твердого тела и технологии неорганических материалов является прецизионное исследование от-

клонения от стехиометрии в кристаллах, а физико-химическим фундаментом получения и устойчивой эксплуатации материалов заданного состава, обладающих экстремальными величинами полезных свойств, являются фазовые равновесия, геометрическое изображение которых принято называть F-T-X фазовой диаграммой.

В реферируемой работе проблеми гетерогенных равновесий рассмотрены в связи с прямым определением F-Т-Х областей устойчинооти и отклонения от отехнометрии в кристаллах полупроводниковых веществ с узкой областью гомогенности и оксидов, используемых во многах твердотельных устройствах. Для изучения фазовых равноверий нопользованы два пути - экопериментальный (мослепование давления и осстава пара) и расчетный (решение прямой равновесной задачи). Фундаментальное и прикладное значения этого комплекоа задач подчеркиваются тем, что они были поставлены и решалиоь в соответствии с программами важнейших научно-лоследовательских работ Академии наук СССР по проблемам "Химия твердого тела" и "Полупроводниковые материалы", темы: "Синтез и изучение термодинамических и бизикожимических свойств кристаллов, тонких слоев и пленок полупроводников АПВУ, АШВУ, сложных полупроводников и гетероструктур", № Гос. региотрации ОІ.86.0043331; "Синтез простых и оложных оксидов и изучение их термодинамических и физико-химических свойств". 1 Гос. региотрации 01.86.0043332.

<u>Цель работы</u> заключалась в ооздании термодинамических сонов направленного синтеза и кристаллизации ряда бинарных полупроводни-ковых соединений и оксидов, установлении закономерных связей между областью существования, или отклонением от стехиометрии в кристаллах, их термодинамическими свойствами и технологическими параметрами — температурой, давлением, составом кристаллизуемой матрицы.

Путь к достижению главной цели лежал через решение оледующих

конкретных залач:

- термодинамический анализ областей существования кристаллических фаз в P-T-X фазовом пространстве;
- экспериментальные исследования фазовых равновесий и построение P-T-X диаграмм в системах zn P, cd P, zn As, cd-As, cd Te, in Se, in in Se, in in Se, in in Se, in in
- тензиметрическое сканирование поверхности солидуса фаз. образующихоя в изученных полупроводниковых системах:
- определение термодинамических характеристик процессов парообразования и плавления комплексов сериллия, алкминия, хрома, циркония, иттрия с р-дикетонами: НАА (ацетилацетон),
 НДГМ (дипивалоилметан), НТФА (трифторацетилацетон), НГФА
 (гексафторацетилацетон), НБА (бензоилацетон), НБТФА (бензоилтрифторацетилацетон); расчет на этой основе F-T-X фазовых
 равновесий в системах М-О-С-Н, где М это А1, ст, ве, хг,
 Y, и определение областей существования оксидов соответствующих металлов в этих системах.

На защиту выносятся следующие положения:

- метод тензиметрического сканирования отклонения от отехнометрии в кристаллах бинарных осединений при произвольном молекулярном составе насыщенного пара;
- F-T-X фазовне равновесия в оистемах Zn P, Cd P, Zn As, Cd As, In Se, Cd Te, BaO WO₃, BaO ZrO₂, M C O Hr (M = Zr, Y, Be, Cr, Al);
- тензиметрическое оканирование отклонения от отехнометрии в фосфидах и арсенидах цинка и кадмия, селениде индия и телдуриде кадмия;
- парциальные и интегральные термодинамические свойства фоофидов и арсенидов цинка и кадмия;

- термодинамика парообразования β -дикетонатов Z**r**, Y, Be, C**r**, A1.

<u>Научная новизна</u> выносимых на защиту положений определяется следующими основными результатами.

На основании анализа областей оуществования фаз в F-T-X пространотве найден путь примого определения осстава конденсированной фазы в равновесии с насищенным наром при измеренных температуре и давлении и произвольном молекулярном составе пара (метод пересечений). Совокупность оканирующих точек $\{F,T,X_g\}$ воссоздает пространственное F-T-X расположение поверхности солидуса. Проведен статистический анализ полученных результатов, показавший, что тензиметрическое оканирование является вноскочувствительным примым методом исследования отклонения от стехиометрии в кристаллах, определения парциальных и интегральных термодинамических функций кристаллических фаз, область гомогенности которых не превышает 0,T ат.%.

Проведен термодинамический анализ в P-T-X фазовом проотранотве явлений полиморфизма и метастабильности в бинарных системах, вклютая область высоких давлений. Рассмотрены основные типы метаотабильных состояний и полимсрфизма в кристаллах.

Прознализированы возможные формы поверхностей, образуемых линиями трехфазных равновесий при конгруэнтном и инконгруэнтном фазовых переходах переого рода в конденсированном осстоянии, и установлено отсутствие взаимсовязи между характером фазового перехода и бормой этих поверхностей.

исоледованы F-T-X фазовые равновеоия в оистемах Zn-F, Cd-P, Zn-As, Cd-As, In-Se, Cd-Te, BaO- WO_3 , BaO- ZrC_2 и на этой основе выполнено тензиметрическое оканирование отклонения от отехнометрии в кристалиах полупроводников, перопективных или уже использующихся

в качестве материалон электронной техники.

В полоках рациональных технологических путей получения окондов бериллия, алкминяя, царкония, иттрия в виде покрытий или в других агрегатных осотояниях проведен расчет равновесного состава в системах, образующихся при термической диосогиации в-дикетонатов этих металлов, с использованием экспериментально полученных термодинамических характеристик процессой плавления и паросбразования комплексов. Определени F-Т-Х области существования оксидов в соответствующих многокомпонентных системах.

Перечисленные результаты представляют собой комплекс исследований по P-T-X фазовым равнозесиям и тензиметрическому сканированию отклонения от стехиометрии в кристаллах с узкой (менее U,I ат.%) областью гомогенности (фосфиды и арсениды цикка и кадмия, некоторые халькогеницы и оксиды), направленных на установление закономерных овязей мэжду термодинамическими свойствами, составом равновесных фаз, температурой и давлением, и определение на этой основе оптимальных технологических условий управляемого синтеза веществ заданного состава.

Практическая значимость работы осотом в том, что ее результатн дали возможность описать гетерогенные равновесия в исоледованных опотемах в численном, аналитическом и гесметрическом вицах, очто и представляет особи термодинамические основы награвленного оинтеза веществ. Конкретные результаты использованы в организациях, занимающихся технологией и применением неорганических материадов и металлорганических осединений, в частности:

- HIIC "Платан" - результаты мооледования Р-Т-Х фазовой диаграммы и изотермические сечения в системе сс-те мопользованы для ситимизации процесса выращивания монокристаллов теллурида кадмия из паровой фазы, что повышенным отруктурным совершенством, пригодные для создания мишеней видиконов;

- НПО "Автоэлектроника" результаты экопериментальных термодинамических исоледований и расчета равновесного состава для олотем, образованных комплексами хрома, алюминия, железа, никеля,
 мопользованы при разработке процессов "газофазной металлизации"
 формообразующих частей пресс-форм, внедренных на Визниковском заводе автотракторной осветительной арматуры о годовым экономическим
 эффектем 130 тысяч рублей;
- ИЯИ АН СССР результати исоледования термодинамических овойсть р-дикетонатов сериллия использованы при разрасотке литийсериллиевого детектора солнечных нейтрино;
- ИФХ АН СССР результати исследования термодинамических свойств и процессов термического разложения редикетонатов цирко- ния и иттрия, расчета равновесного состава использованы при разра- ботке процесса получения оксидных покрытий для защиты изделий новой техники от воздействия активных газовых сред;

-ФТИ им.А.Ф.Иоффе АН СССР - результати по иоследованию Р-Т-х диаграмм тугопланких материалов с участием оксида бария использованы для выращивания монокристаллов вольфраматов и цирконатов бария, решения допросов совместимости и ресурсоснособности.

Термодинамические овойства веществ, полученные в расоте, использованы при составлении оправочника "Физико-химические овойства
полупроводниковых материалов" (М: Наука, 1979), Отдельные результаты расоты приведены в монографиях Н.Х.Абрикосова и др. "Полупроводимовые халькогеницы и оплавы на их основе" (М: Наука, 1975),
В.П. Эломанова и А.В.Новоселовой "Р-Т-Х диаграммы состояния систем

металл-халькоген" (М: Наука, 1987).

Апробация работы. Результаты диосертации были доложены и опубликованы в трудах оледующих конференций и совещаний: ТУ. У. УТ и УП Воссоюзные координационные совещания по подупроводниковым соединениям А^ПВ^У (Укгород, 1978; Нушаное, 1982; Каменец-Подольокий, 1984; Воронеж. 1987): Всесоюзная конференция по физико-химическому анализу полупроводниковых материалов (Баку, 1972); Воесоюзное совещание по химии твердого тела (Свердловок, 1975): ТУ Международная конференция по кимической термодинамике (монпелье: 1975): Всесоюзное совещание по получению, свойствам и применению фосфидов (Киев. 1976): Воесораная конференция "Химия и технология фообидов и фосфорсодержания сплавов" (Киев. 1979): XII Менделеевский съезд по общей и прикланной химии (Баку. I 98I): УШ и IX Воесоюзные совещания по термическому анализу (Куйбышев, 1982; Ужгород, 1985); Всесовзный семинар "Новые достижения в области фосфидов и фосфороодержащих оплавоз" (Киев, 1983); ІХ, Х и ХП Воссоюзные конференции по калориметрии и кимической термодинамике (Тбилиси, 1982; мооква, 1984; Горький, 1988); Г. П. Ш Воссовные конференции "Термодинамика и полупроводниковое материаловедение" (Москва, 1979. 1983 и 1986); У Международная конференция по тройным и многокомпонентным орединениям (Кальяри, Италия, 1985); УІ и УП Всесоюзные совещания по физико-жимическому аналику (Киев. 1983: Фрунзе, 1988); УШ международная конференция по термическому анализу ІСТА-85 (Бфатислава, 1985): Международный симпознум по химии твердого тела (Карловы Вары, 1986): Международная конференция по термическому анализу (Иена: 1987); Вчездная сессия Совета АН СССР по неорганической химии (Таллинн, 1987); УІ Всесоюзное совещание "Применение МОС для получения неорганических покрытий и материалов" (Горький, 1987); У Международная конференция по высокотемпературным материалам (Рим, 1987); У и УП Воссоюзные конференции по физике, химии и техническому применению хальгогенидов (Баку, 1979; Ужгород, 1998); х конференция ИЮПАК по химической термодичамике (Прага, 1988).

<u>Публикании.</u> Материалы диосертации опубликованы в первом и заключительном томах двенадцатитомника "Current Topics in Materials Science", в мснографии "Полупроводниковые соединения группы А^Пв^у", нациоанной совместно с В.Б.Лазаревым, В.Я.Шевченко и В.В.Соболевем, статьях в советских и зарубежных журналах.

Структура работы. Диосертация состсит из инти разделов: выедения, описения специальных типов Р-Т-х фазовых равновесий в бинарных опстемах (глава I), экспериментальных исследований (главы П и Ш), заключения, списка литературы и приложения. Работа написана на 226 страницах, содержит 67 рисунков и ЭГ таблицу. Список цитировенной литературы включает ЗГ6 наименований.

ГЛАВА I. Некотерые особенности Р-Т-X фазовых равновесий в бинарных системах

В I главе последовательно расомотрени F-I-X равновесия в системах с разного типа полиморфизмом компонентов; конгруэнтные и инконгруэнтные фазовые переходы I рода в конденоированном состоянии и форма поверхности, содержащей линии трехфазного равновесия; метастающимые состояния в F-T-X фазовом пространстве и связь мехду явлениями полиморфизма и метастабильности с учетом взаимной расотворимости компонентов во всех агрегатных состояних и образования нестехнометрических соединений. Особое внимание уделено равновесиям с участием только конденсированных фаз, обычно наблюдаемым при высоких давлениях.

Топология Р-Т-Х фазоных диаграми в бинарных системах проана-

лизирована для всех четырех известных типов полиморфизма компонентов, образующих две кристаллические модификации - низкотемпературную и высокотемпературную 7: 1) обе модификации сублимируют. плавятся и осоуществуют на линии двухфазного равновесия $d \gamma$; 2) плавитоя лишь одна, высокотемпературная модификация; 3) сублимирует только низкотемпературнан модификация (обычно тогда 🍸 🗢 фаза высокого давления); 4) одна из модификаций метастабильна. в первом разделе приведены Р-Т и Т-Х проекции бинарных систем с параллельным и непараллельным полиморфизмом компонентов всех типов, о неограниченной растворимостью во всех агрегатных состояни--эпис ики стонде очторомировтова исинеринарто о живт в жив нентов в одной или двух кристаллических модификациях. Рассмотренн онотемы с различным взаимным расположением нонвариантных точек. для более наглядного представления взалиного расположения однофазных объемов всех фаз в F-Т-х пространстве, наряду с Р-Т и Т-х проекциями каждой диаграммы, в работе приведены изобарные осчения для воех систем при наиболее актуальных с материаловедческой точки зрения давлениях.

Во гтором разделе проанализированы формы линий трехфазного равновесия в системах с конгруэнтным и инконгруэнтным фазовым переходом I рода в конденсированном состоянии. На основании геометрического представления фазовых равновесий показано, что наличие или отсутствие экотремума в двухфазном равновесии между конденсированными фазами, определяющее характер фазового перехода, никак не овязано с формой поверхности, содержащей линии трехфазного равновесия. Анализ проведен с помощью Т-х, Р-Т проекций и изотермических сечений области фазового презращения. В частном случае фазового перехода I рода — плавлении — полученний результат означает, что существование температурного максимума на Т-х проекции линии

ликвиду са не является необходимым признаком конгруэнтного характера плавления.

Третий раздел посвящен Р-Т-Х диаграммам систем, в которых возможны метастабильные состояния. Рассмотрены метастабильные состояния, связанные с полиморфизмом компонентов и образованием химических соединений. Приведены Р-Т, Т-Х проекции и Т-Х оечения илаграмм о непараллельным полиморфизмом компонентов разных типов, с неограниченной или ограниченной растворимостью компонентов в полиморфиях модификациях. Проанализированы метастабильные состояния в системах с химическим соединением, конгруэнтно или янконтруэнтно плавящимоя и сублимирующим.

Из проведенного исследования получен важный вывод: сбласти существования, или однофазные объемы всех фаз в метастабильных состояниях расширяются по сравнению с равновесными условиями. Это обстрятельство особенно необходимо учитывать при исследовании объястей гомогенности кристаллических фаз непрямыми методами (металлография, "закалка равновесий" и др.).

ТЛАВА П. Р.-Т.-Х фазовые равновесия и отклонение от отехнометрии в криоталлах в бинарных полупроводниковых системах

Тензиметоическое оканиоование повержности солидуса. В этом разделе выведены аналитические соотношения между параметрами тензиметрического эксперамента и соотавами кристалла $X_{\rm g}$ и пара $X_{\rm v}$ в двужфазном равновесии кристалл-пар SV (или пар-кристалл VS). В работе принят такой принцип обозначения фазовых равновесий, что порядок фаз в бинарной системе A-B соответствует увеличению содержания компонента В в фазе. В специфических случаях (наличие конгрузнтной линия) порядок фаз в фазовом равновесии может изменяться,

и тогда в разных P-T-X областях одно и то же фазовое равновесле обозначается по-разному.

В работе показано, что система уравнений для расчета из тензиметрических данных равновесных составов фаз в двухфазном равновесных кристалл-пар в бинарной системе в общем случае, когда в пар переходят оба компонента, недоспределена. На основания анализа путей сублимации кристаллических фаз в замкнутом реакционном объеме предложен метод тензиметрического определения состава кристаллической фазы в равновесии с паром, заключающийся в составлении и решении вышеупомянутой системы уравнений в точке пересечения двух тензиметрических кривых, проходящих через область одного и того же двухфазного равновесия. Из правила фаз Гиббоа следует, что такая система уравнений является определенной. С помощью пресеразования уравнений формулу для расчета ссотава кристаллической фазы X₈ (в атомных долях компонента В) в точке пересечения (Р.Т) удалось привести к простому виду

$$X_{s} = \frac{N_{BI}v_{2} - N_{B2}v_{I}}{(N_{AI} + N_{BI})v_{2} - (N_{A2} + N_{B2})v_{I}}$$
(I)

т.е. к зависимости X_S от моходных составов образцов (N_A и N_B количества грамм-атомов компонентов) и объемов пара v в двух невависимых тензиметрических экспериментах. Так как в формуле (I) отсутствуют сведения о паровой фазе, то она оправедлива для промизвельного (в том числе и неизвестного) молекуларного состава пара. Аналитический состав пара X_v в точке пересечения

$$X_{v} = \frac{\sum_{j}^{v} V_{Bj}P_{j}}{\sum_{j}^{v} (V_{Aj} + V_{Bj})P_{j}}$$
 (2)

в этом методе вычисляется из экопериментальных данных и рассчитанного $\mathbf{X}_{\mathbf{S}}$.

В формуле (2) $P_{\bf j}$ — парциальное давление пара $\,$ ј —той моле-кулярной формы, $V_{A\,{\bf j}}$ и $V_{B\,{\bf j}}$ — чиола атомов A и В в $\,$ ј —той моле-куле.

Структура формулы (I) позволяет непосредственно применить закон накопленая ошибок к расчету погрешности определения X_g . Из (I) очевидно, что величина Δx_g зависит не только от абсолютных погрешностей экоперимента, но и от природы исследуемого объекта и условий проведения опита (объемы и масон образцов). Расчеты показали, что для типичного тензиметрического экоперимента, в котором масса образца (I-50 г) измеряется о точностью 10^{-4} г, а объем (I0-200 мл) — о точностью 0,I-0,5 мл, в точке пересечения двух кривых величина Δx_g изменяется в пределах 10^{-2} — 10^{-4} ат.%. В то же время, погрешность определения состава пара x_v , как видно из формулы (2), зависит от надежности используемых термодинамических свойств всех газообразных молекул и, как следует из расчетов, может доходить до нескольких ат.%.

Получив оканирующие точки пересечения во всей F-T-X области SV, можно просканировать описанным методом область существования кристаллической фазы и вывести температурные и концентрационные зависимости парциальных давлений пара. Эти данные позволяют вычисмить активности компонентов, парциальные и интегральные термодинамические функции нестехиометрического кристалла. Анализ изстерм активности компонентов a_1 в зависимости от состава нестехиометрического кристалла дает возможность оделать суждения о дефектной отруктуре кристалла, так как известно, что тип дефектов определяет специфический вид зависимости $a_1(X_B)$. Полученные результаты непосредственно овязаны о ростом кристаллов заданного состава, так как во-первых, дают зналитическую овязь состава кристалла о температурой, давлением и составом кристаллизуемой матрицы и, во-вторых,

P-T путь (изоконцентрата) программируемого охлаждения выращенного кристалла без изменения его состава.

Во втором разделе П глави дана карактеристика попользованных экопериментальных методов. В частности, приведены технические возможности отдельных узлов тензиметрических установок, погрешности измерения всех экопериментальных параметров и результаты калисровки установок в целом. В посмедующих разделах окисаны тензиметрические исследования конкретных систем.

Слотема пинк - фосфор

Пля построения приведенной в работе Р-Т-Х фазовой диаграммы измеряли давление насыщенного пара в области концентраций 40-85 ат. 7 фосфора. В системе зарегистрированы два соединения - Zn3P2 и ZnP., каждое из которых криоталлизуется в двух модификациях. Область равновесия Zn₃P₂ с паром на P-T проекции ограничена линиями трехфазных равновесий между кристаллическими Zn₃P₂, ZnP₂ и паром; $2n_3P_2$, жидкоотью и паром, а также линией минимального давления $S(Zn_3P_2) = V$, соответствующей конгруэнтной сублимации Zn₃P₂. Линия равновеоия Zn₃P₂ с жидкостью и паром проходит через температурный максимум 1466 К. Указанные трехфазные кривые вместе о линиями VLS(ZnP2) и S(Zn3P2)LS(ZnP2) пересекаются на F-T проекции в нонвариантной точке E_T (V+Zn₃P₂+L+ZnP₂). Область равновеоия второго фосфида цинка, ZnP2, о паром проектируется на F-T . плоскость в виде поля, ограниченного моновармантными кривыми S(ZnP₂)S(F)V, S(Zn₃P₂)S(ZnP₂)V и S(ZnP₂)LV, последняя из которых проходит через температурный максимум 1313 К, вблизи которого отмечена инверсия порядка фаз S(ZnP2)L = LS(ZnP2), являющаяся оледотвием конгруэнтного плавления ZnP2. Минимума давления в области существования ZnP2 нет, откуда следует, что ZnP2 сублимирует инконгрузитно.

Таблица I. Максимальное отклонение от стехнометрии $E^{2n_3P_2}$ (растворимость фосфора)

T, K	P, Klla	Граница области гомогенности, ат.% Zn
1058	5,33	59,991
1078	8,00	59,988
1085	9,20	59,988
1087	9,60	59,988
1093	10,93	59,9 88

В табл. І приведены результаты тензиметрического определения границы области гомогенности $2n_3P_2$. Из моновариантных кривых $S(2n_3P_2)=V$ и $S(2n_3P_2)S(2nP_2)V$ о помощью П закона термодинамики вычислены стандартные энтальпии образования $2n_3P_2$ и $2nP_2$, вошедшие в табл.6.

Система кадмий - фосфор

Основная часть экоперимента выполнена в области составов 66— 85 ат.% фосфора, на основании чего получены F-T проекции областей существования CdP_2 «Л CdP_4 », ограниченные состветствующими указанными в работе кривыми трехфазных равновесий. На основании экопериментальных исследований, а также литературных данных в этом разделе приведена охема F-T-X фазовой диаграммы Cd -P во всей области концентраций в виде P-T и T-X проекций и шести наиболее характерных изотермических сечений. В табл. 2 приведена максимальная растворимость фосфора в CdP_2 . Интересной особенностью системы Cd -P является наличие двух минимумов по давлению, в областях существования $\mathrm{Cd}_3\mathrm{P}_2$ и CdP_2 , что является оледствием конгруэнтной сублимации осоих фосфидов. Из экопериментальных данных по моновариант

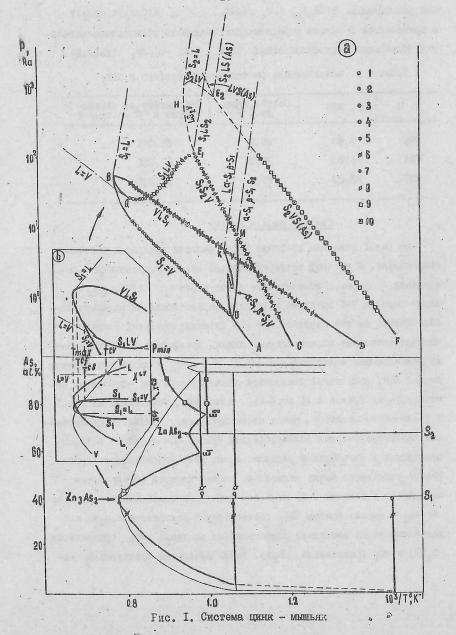

ным равновесиям $S(Cd_3P_2) = V$, $S(CdP_2) = V$ и $S(CdP_2)S(CdP_4)V$ с применением П закона термодинамики вычислены стандартные энтальнии образования кристаллических Cd_3P_2 , CdP_2 и CdP_4 (табл.6).

Таблица 2. максимальная растворимость фосфора в саг

T, K	P, KIIa	Соотав пара,	Отклонение от отехио- метрии в CdP ₂ , ат.% Р
805	6,80	98,2	67,041
824	10,33	97,9	67,231
837	13,33	97,7	67,361

Система цинк - мышьяк

на рис. I показани проекции Р-Т-х фазовой диаграмми системи цинк-мышьяк, в которой экопериментально зарегиотрированы два соединения — $\operatorname{Zn}_3\operatorname{As}_2$, обозначаемое далее через S_T , и $\operatorname{ZnAs}_2(\operatorname{S}_2)$. Линия пара на Т-Х проекции приведена на основании экопериментальных данных, но вне масштаба. На Р-Т проекции нанесены следующие экспериментальные моновариантные линии. Трехфазное равновесие между полиморфными модификациями \ll и β - $2n_3$ As $_2$ и паром описывается линией КОМ, полученной измерением давления пара над образцами, осотав которых близок к 40 ат. % As. Линия КОМ, показанная на рис. I в увеличенном масштабе, имеет необычную форму. Подробное рассмотрение характера фазовых взаимодействий при lpha-eta- переходе в z_{03} As $_2$ приводитоя в опециальном разделе. Линия ВКО характеризует трехфазное равновесие между жидкостью, состав которой определяется ликвидуюм в области 0-40 ат % Аз, кристаллической фазой на основе ${
m Zn}_3{
m As}_2$ и паром. Кривая СМЕ $_{
m T}$ соответствует равновесию ${
m S}_{
m T}{
m S}_2{
m V}$ и в точке плавления эвтектики разветвляется на линии вод (равновесие $\mathbf{S}_{\mathsf{T}}\mathbf{L}\mathbf{V}$) и н \mathbf{E}_{T} (равновесие $\mathbf{L}\mathbf{S}_{\mathsf{2}}\mathbf{V}$). Точка плавления эвтектики \mathbf{E}_{T} яв-

ляетоя нонвармантной точкой четырехфазного равновесия о участием ${\rm Zn_3As_2}$, ${\rm ZnAs_2}$, жидкости эвтектического состава и пара. Поле ${\rm F-T}$ проекции между линиями вкр (AOB) ${\rm CME_T}$ ограничивает область равновесия фазы на основе ${\rm Zn_3As_2}$ о паром. Линия вкр жарактеризует максимальную растворимость цинка в ${\rm Zn_3As_2}$, а линия ${\rm CME_TQB}$ — максимальную растворимость мышьяка. Область АОВКр является ${\rm F-T}$ проекцией дивариантных равновесий ${\rm S_TV}$ с участием ${\rm Zn_3As_2}$, насыщенного цинком, а равновесие ${\rm S_TV}$ с участием ${\rm Zn_3As_2}$, насыщенно-го мышьяком, проектируется на область АОВСЕ ${\rm TMC}$. Из рис. І видно, что ${\rm P-T}$ проекции этих двух областей частично перекрываются.

Линия FE, соответствует трехфазному равновесию между твердыми ${\tt ZnAs}_2$, мышьяком и насыщенным паром. Точка ${\tt E}_2$ — нонва мантная точка равновесия четырех фаз: S(ZnAs2), S(As), жидкость эвтектического состава и насыщенный пар. Кривая Еон характеризует равновесие Solv. Точка Н соответствует максимальной температуре плавления в области существования фазы на основе ZnAs2, границами которой на Р-Т проекции является линия сметнеов. Моновариантные равновесия о участием элементов (цинка и мышьяка) на рис. І не показаны, так как они практически не отличаются от линии ВD (иопарение цинка) и E₂F (сублимация мышьяка). Наличие минимума давления в области существования Zn3As2 (линия АОВ) указывает на конгруэнтность сублимации этого арсенида; отсутствие аналогичного моновариантного равновесия для ZnAs, овидетельствует об инконгруэнтном характере оублимации диароенида цинка. В трехфазных равновесиях STLV и LS2V имеются максимумы температуры плавления и точки конгруэнтного плавления ароенидов цинка.

_ Отличительной чертой диаграммы является уменьшение давления пара с ростом температуры в трехфазном равновесии S_{I} LV вплоть до точки P_{min} . Взаимное расположение линий S_{I} LV, L(Zn)V, S(Ab)V, наряду с отрицательным коэффициентом dT/dP трехфазных линий

равновесия между конденоированными фазами, свидетельствует о существовании в равновесии $S_{\rm L}$ V азестропной точки ${\bf 1}={\bf v}$ (точка Q на рис.1). В увеличенном масштабе на рис.1 представлены фрагменты P-T и T-X проекций в области от температуры конгруэнтного испарения до ${\bf T}_{\rm max}({\bf S}_{\rm L})$. Анализ положения трехфазных линий вблизи ${\bf T}_{\rm max}({\bf S}_{\rm L})$ привел к следующим соотношениям между температурами и составами фаз в особых точках: ${\bf T}_{\rm cm} < {\bf T}_{\rm max}, {\bf X}_{\rm cm} < {\bf X}({\bf T}_{\rm max})$ для конгруэнтного плавления ${\bf S}_{\rm L}$; ${\bf X}_{\rm cs} > {\bf X}({\bf T}_{\rm max})$ для конгруэнтной сублимации; ${\bf X}_{\rm cv} > {\bf X}_{\rm L}({\bf T}_{\rm max})$ для конгруэнтного испарения. Псказано, что в области ${\bf T}_{\rm max}({\bf S}_{\rm L})$ ${\bf X}_{\rm v} < {\bf X}_{\rm s} < {\bf X}_{\rm L}$, а в области ${\bf T}_{\rm max}({\bf S}_{\rm S})$ ${\bf X}_{\rm v} < {\bf X}_{\rm s} < {\bf X}_{\rm L}$, а в области диаграммы в наиболее важном с точки зрения материаловедения интервале температур от ${\bf T}_{\rm max}({\bf S}_{\rm L})$ до ${\bf T}({\bf E}_{\rm L})$.

Результаты тензиметрического оканирования eta-Zn $_3$ As $_2$ предотарлени в табл.3. Максимальная растворимость цинка в β -Zn $_3$ As $_2$ ооставляет $\sim 10^{-2}$ ат.% и мало меняется с температурой, в то время как растворимость мышьяка при эвтектической температуре достигает \sim 0,08 at.%. В работе показано, что линия конгруэнтной сублимации $S_T = V$ не является изоконцентратой, и существует (P,T,X) область, в которой Zn₃As₂ со оверхотехнометрическим цинком находится в равновесии с царом, содержащим практически чистый мышьяк, и другая область, в которой z_{n_3} со сверхотехиометрическим мышьяком находитоя в равновесии с наром - практически чистым цинком. Проведен статистический анализ результатов, из которого следует, что погрешность определения х в точках пересечения тензиметрических кривых лежит в пределах $\pm (5.10^{-5} - 5.10^{-4})$ ат.%, а для границ области гомогенности $\triangle x_s \sim 10^{-3}$ ат.%. Приведены парциальные термодинамические функции смешения цинка и мышьяка в области оущеотвования β -zn $_3$ As $_2$. В табл.6 даны стандартные энтальнии

Таблица 3. Максимальная раотворимость компонентов ${\bf B} \quad \beta {\sim} {\bf Zn_3As_2}$

n ic	Раотвори	Растворимость цинка		ванашим атсом
T, K	P, KNa	X _s , at.%As	P, Kla	X, at %As
960			19,93	40,02(2)
964	6,39	39,99(25)		
985			38,60	40,04(5)
994			49,26	40,05(2)
998	10,16	39,99(24)		
1002			59,92	40,05(5)
IOI2			76,79	40,06(2)
1024	14,25	39,99(29)		
1045	19,57	39,99(14)	III,58	40,07(48)
1052	23,98	39,99(15)	95,83	40,06(96)
I078			83,19	40,06(2)
1081	29,58	39,99(17)	8I,90	40,06(43)
1098	35,69	39,99(19)	71,17	40,05(95)
1108			68,53	40,05(5)
III5	42,50	39,99(20)	62,45	40,05(51)
1125			60,00	40,05(2)
II35	52,33	39,99(22)	53,44	40,04(97)
1152	62,11	39,99(24)	47,01	40,04(54)

образования Znas, и Znas,

Система кадмий - мышьяк

- фазовая F-T-X длаграмма поэтроена на основании тензиметрических исследований трехфазных равновесий с участием пара при давлениях до 200 кПа и литературных данных по равновесиям между конденсированными фазами при давлениях до 5.10^6 кПа. Ввиду известной оклонности оплавов кадмия о мышьяком к образованию мета-отабильных состояний, особое внимание было уделено разработке методов синтеза равновесных образцов заданного состава. На рис.2 приведены Р-Т и Т-Х проекции осъемной модели, а также Р-Т проекции однофазных объемов кристаллических фаз $Cd_3As_2(S_1)$, $CdAs_2(S_2)$ и $CdAs(S_3)$. На Т-Х проекции, кроме ветеей ликвидуса в трехфазных равновесиях с участием пара (VLS₁, S₁LV, LS₂V, S₂LV, LS_{AS}V), нанесены ветви линии ликвидуса для трехфазных равновесий между конденсированными фазами: E_1E_4 — для расплавов в равновесии S_1LS_2 ; E_4E_3 — в равновесии S_3LS_2 ; E_4E_5 — в S_1S_3L ; E_5E_3 — в S_3LS_{AS} ; E_5L — в S_1LS_{AS} ; E_3E_2 — в LS_2S_{AS} и S_2LS_{AS} . Имеющиеся в системе конгруэнтные линии S_1 =V, S_1 = L, L = V и S_2 = L показаны на рис.2 только на P-T проекции с целью облегчения чтения. Т-Х проектии.

В работе обоуждаются возможности получения аркенидов кадмия из разных матрии, для чего построены 16 изобарных сечений фазовой диаграммы при актуальных для технологии роста кристаллов температурах.

Рассмотрень Р-Т-Х пути метастабильной кристаллизации сплавов в системе Cd - As. Выделены и проанализировань три типа диаграмм метастабильных состояний, построены их Р-Т и Т-Х проекции и сечений: В Р-Т-Х пространстве метастабильные осстояния возникают в результате того, что-место равновесного объема кристаллического $^{\text{CdAs}}_2$ занимают метастабильные части объемов сосуществующих с ним фаз: $\mathbf{S_I}$, $\mathbf{S_{As}}$, \mathbf{L} , \mathbf{V} — для диаграммы метастабильных состояний I типа; $\mathbf{S_I}$, $\mathbf{S_{As}}$, \mathbf{L} , \mathbf{V} — для II типа; $\mathbf{S_I}$, $\mathbf{S_4}$, $\mathbf{S_{As}}$, \mathbf{L} , \mathbf{V} — для II типа; $\mathbf{S_I}$, $\mathbf{S_4}$, $\mathbf{S_{As}}$, \mathbf{L} , \mathbf{V} — для II типа; $\mathbf{S_I}$, $\mathbf{S_4}$, $\mathbf{S_{As}}$, \mathbf{L} , \mathbf{V} — для II типа. Вероятный состав фазы $\mathbf{S_4}$ — $\mathbf{CdAs_4}$.

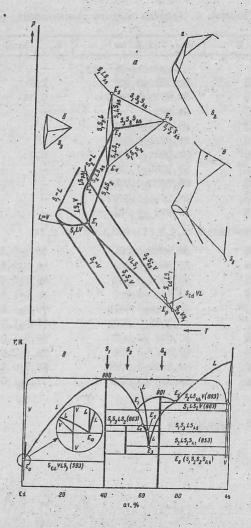


Рис. 2. Система калмий - мыльяю

Таблица 4. Границы области гомогенности сазава

Т, К		X _{SI} , ar.%	As	X _v , ar.% A	s
1.		Равново	OMO VLS		2
748,15		39,9869+0	,00I	I,3	
308,15		39,9797+0		0,06	
323,15		39,979			
338,15		39,9792+0	,00I	_	
358,15		39,9818+0	100,	600	
869,I5 ³⁶		39,9822+0	0008	0,6	
69,I5 [*]		39,9800±0	,0008	ana .	
82,95		39,9803+0.	0015	est .	
29,05		39,9798+0	,0007		
53,15		39,979 ±0,	,00I	eng	
Равн	виовео	S_S2V (T<	883,15 K) m s _i lv	
9I,85		39,9903±0,	TOO	93,8+0,8	
UI,65	,	39,9944+0,	200	94,9+2,5	
30,55		39,9974+0,	003	95,5+0,2	
53,15		39,9980±0,	.00I	96,5+1,5	
69,15 ³⁶		39,9982+0,	0015	79,3±I,5	
69, I5 [¥]		40,000I±0,	0015	75,0±I,5	
93,15		40,002 ±0,	T00	96,7±I,0	
23,15		40,00I +0,		76,8+3,5	
40,85		39,9999+0,	0015	86,7+0,4	
53,15		39,998 ±0,	OOI	77,7+1,0	

³⁶ d − β − превращение

Таблица 5. Границы области гомогенности сдава

T, K.	X _{S2} , at.% As	X _v , at % As
Равнов	,888 T) V ₂ e ₁ e Rucer	15 K) и Ls ₂ v
809,05	66,659 ± 0,0006	96,9 <u>+</u> I,9
872,35	66,658 ± 0,0007	97,3 ± 0,3
885,05	66,657 ± 0,0009	99,5 ± 0,I
891,25	66,657 ± 0,0006	99.3 ± 0,2
896,85	66,658 ± 0,001	99,8 ± 0,I
900,536	66,660 ± 0,00I	99,6 ± 0,I
	Равновеоме S2SAs	v
70I,45	66,662 ± 0,0006	99,7 ± 3,6
774,7	66,667 ± 0,0007	99,8 ± 0,4
806,65	66,666 ± 0,0006	99,8 ± 0,2
819,65	66,666 ± 0,0007	1,0 ± 8,00
853,25	66,662 ± 0,00I	99,8 ± 0,I
862,65	66,663 ± 0,001	99,8 ± 0,I
880,65	66,664 ± 0,00II	99,9 ± 0,I

^{*} Tmax(S2)

Проведено тензиметрическое сканирование Cd₃As₂ и CdAs₂. Максимальные отклонения от стехнометрии в обоих соединениях даны в табл.4 и 5, а голучение стандартные энтальпии образования — в табл.6. В работе приведены таблацы парциальных термодинамических функций омещения кадмия и мышьяка в областях существования Cd₃As₂ и CdAs₂. Обоукдается положение однофазных объемов обоих арсенидов кадмия по отношению к соответствующим стехнометрическим плоскостям.

Таблица 6. Стандартные энтальнии образования осединений А Пр

Соединение	- ^Δ ₁ H ⁰ (298, I5 K), кла/моли
Cd ₃ P ₂	100,812,6
CdP ₂	56,5 <u>+</u> 8,4
CdP4	92,1±12,6
Zn ₃ P ₂	168,2 <u>+</u> 12,6
ZnP ₂	85,4 <u>+</u> 12,6
β-Zn ₃ As ₂	103,0±8,0
ZnAs ₂	56,1±4,0
ol-Cd3As2	59,9±3,0
B-Cd3As2	52,6±2,0
CdAs ₂	30,5±0,8

Спотема индай - селен

В работе подробно изучена Р-Т-Х фазовая длаграмма этой сиотемы в области существования наиболее перспективного в полупроводниковой технике селенида индия — In₂Se₃. На рис.З приведена Р-Т проекция области равновесия In₂Se₃ с паром, ограниченной трехфазной линией, авср. Верхняя се часть (ABC) соответствует

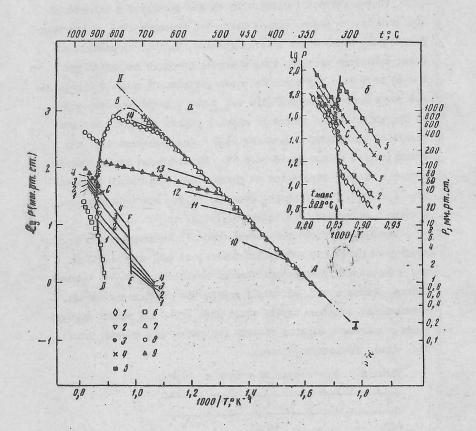


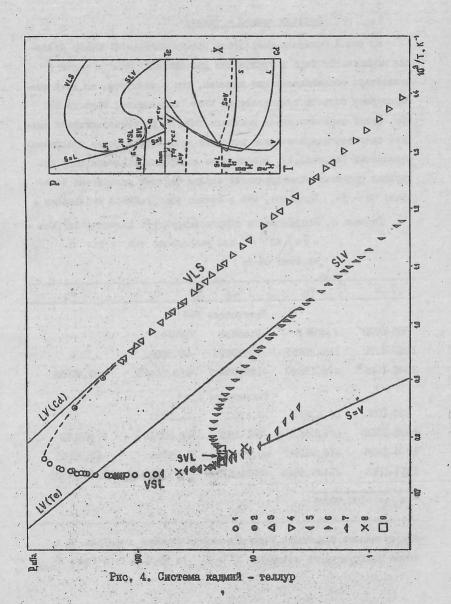
Рис. 3. Р-Т проекция области существования Іп, Se,

трехфазному равновесию между насыщенным селеном $\ln_2 \mathrm{Se}_3$, жидко-стью, состав которой определяется линией ликвидуса в области 60—100 ат.% Se, и паром. Нижняя ветеь F-T проекции (CD) — это трехфазное равновесие между кристаллическим $\ln_2 \mathrm{Se}_3$, насыщенным индивм, жилкостью состава, изменяющегося по линии ликвидуса при $\mathrm{X} < 60$ ат.% Se, и паром. Обе части оливаются в точке С максимальной температуры плавления фазы $\ln_{2-\delta} \mathrm{Se}_{3+\delta}$ фиксированного состава под определенным давлением пара. В работе показано, что максимальной температуре плавления II6I к под давлением 4,67 кПа состветствует состав 59,98 ат.% Se. Максимальная растворимость селена в $\ln_2 \mathrm{Se}_3$ спределена из кривых 10-14 (см.рис.3) и приведена в табл.7. Растворимость индия в $\ln_2 \mathrm{Se}_3$ при температурах, близких к плавлению, составляет 0.01-0.02 ат.%.

Экопериментальные результаты (табл.7) показывают, что $\ln_2 \mathrm{Se}_3$ растворяет небольшие количества селена, от 0,0I до 0,II ат.%, и что с повышением температуры область гомогенности $\ln_2 \mathrm{Se}_3$, расширяется. Вместе с тем, из табл.7 видно, что возможности метода, составляющие в данном случае сотые доли ат.%, при низких температурах совпадают с шириной области гомогенности и поэтому дают лишь оценку граничных составов.

Таблица 7. Растворимость селена в IngSe3

Т, К	X _s ,ar.% Se	a con in
648	60,01	
722	60,01	
748	60,03	
755	60,05	
791	60,05	
915	60,II	


Система кадмий - теллур

На рис.4 показаны результаты прямых измерений общего давления насыщенного пара в трехфазных равновесиях ССТФ о паром и жидкостью, обогащенными как кадмием, так и теллуром, во всей температурной области существования ССТФ и давлениях пара до 170 кПа. Ввиду первостепенной важности ССТФ в полупроводниковой технике приведем аналитическое описание всех ветвей линии трехфазных равновесий (см. табл.8). Выполненные измерения давления пара позволили провести гесметрический анализ фазовых равновесий в спестеме ССССТФ. Показано, что в точках конгруэнтной сублимации и

Таблица 8. Коэффицианты анпроксимирующего полинома 1 е 1 (Га) = $=\sum_{a_{1}}^{1}(\mathbf{Io}^{a_{1}})^{\frac{1}{4}}$ для равновесий VLS и SLV в оистеме Сd-Te

T, K	a ₀	a ₁	a _I	a ₂
		Равновесие	VĻS	
885-I000	4,80917	-2,88624	2,88142	
1010-1035	I55,32657	-79,60679	-70,95084	-
1045-1365 ¹⁸	478,18599	-I28,88867	-668,68403	426,85938
		Равновесие	SLV	÷ .e
880-1030	13,53414	-7,49507	-2,36938	_
1035-1085	375,58573	-141,18309	-328,33769	97,54173
1090-1305	-13,96199	-0,77407	31,26086	-12,90855
1315-1365	22435,5538	-9754,57872	-17195,56521	4394,34559

конгруэнтного плавления теллурид кадмия насыщен теллуром, а в точке конгруэнтного испарения $\mathbf{x}^{cv}\!\!>\!\mathbf{x}_{a}$ (в ат.% Те). В точке \mathbf{T}_{max}

составы равновесных фаз состветствуют неравенству $\mathbf{X}_{\mathbf{v}} < \mathbf{X}_{\mathbf{I}} < \mathbf{X}_{\mathbf{S}}$, а в конгруэнтных точках $\mathbf{X}^{\mathbf{cv}} < \mathbf{X}^{\mathbf{cs}}$. Линия конгруэнтной сублимации $\mathbf{S} = \mathbf{V}$ не является изоконцентратой, причем $\mathbf{T}^{\mathbf{cs}}$ ниже \mathbf{T}_{\max} на ~40 К. Пути равновесной кристаллизации теллурида кадмия с разным отклонением от стехиометрии из разных матриц прослежены с помощью II изобарных и изотермических сечений P-T-X фазовой диаграммы. Выполнено тензиметрическое сканирование поверхности солидуса CaTe.

В табл. 9 приведены Р-Т-X координаты границ области гомогенности ссте.

Таблица 9. Границы области гомогенности Ссте

T, K	Р, кПа	X _s , at % Te	x, at.% Te
		Растворимость теллура	
1013,9	5,49	50,002I±0,000I	99,9
1047,3	7,92	50,004I±0,0004	99,9
1076,0	10,35	50,0060±0,000I	99,8
1094,3	12,06	50,0079 <u>+</u> 0,0003	99,8
1102,8	12,93	50,0084 <u>+</u> 0,000I	99,8
1243,1	21,29	50,0072±0,0008	96,6
1282,2	19,71	50,0034±0,00I0	96,1
1285,5	19,51	50,0028±0,00I5	91,2
1299,4	18,51	50,0030 <u>+</u> 0,0030	86,2
1307,7	17,83	50,0023±0,0040	79,0
1356,8	73,86	50,0022 <u>+</u> 0,0006	1,8
		Растворимость кадмия	
871,4	10,18	49,9968±0,000I	~10-4
891,8	13,89	49,9961 <u>+</u> 0,000I	~10-4

ГЛАВА Ш. Р-Т-Х фазовые равновесия в оксидных системах

В Ш главе приведени Р-Т-Х фазовые диаграммы вао-WO₃ и вао-ZrO₂, построенные на основании масс-опектрометрических исоледований процессов паросбразования в этих системах, выполненных А.С. Алиханяном и К. Н. Марушкиным в ИСНХ АН СССР, а также результать расчетов Р-Т-Х фазовых равновесий в системах М-С-О-Н, где М - это Zr, Y. AI, Cr. Be.

Cuorema Bao - Wo3

Приведенные на рис.5 проекции Р-Т-Х фазовой диаграммы построены о мопользованием термодинамических свойств фаз и данных по осотаву пара. Из анализа экопериментальных данных следует, что система в рассматриваемой области параметров является квазибинарной. на Р-Т проекции представлены линии трехфазных равновесий о участием BaO (обозначен через S^{I}), $\text{WO}_{\text{3}}(\text{S}^{\text{II}})$, трех кристаллических вольфраматов бария - $Bawc_4(S_T)$, $Ba_2wo_5(S_2)$, $Ba_3wo_6(S_3)$, и пара V. В системе обнаружены два конгруэнтных процесса парообразования с минимумами давления в соответствующих двухфазных областях: конгруэнтная сублимация з-= у и конгруэнтное испарение L = V. Показано, что в пределах экспериментальных погрешноотей $X^{cs} = 50$ мол. % WO₂ и не меняется с температурой, а ${\tt x^{cv}}\!\!>\!50$ мол. ${\tt %}$ wo, и зависит от температуры. Наибольший прикладной интерео представляет ${\tt BaWO}_{\Lambda^{\bullet}}$ Поэтому на обеих проекциях рис.5 область вблизи $T_{max}(S_T)$ представлена в увеличенном масштабе. Соотавы равновесных фаз в точке Ттах соответствуют неравенству $\mathbf{X}_{\mathbf{v}} \! < \mathbf{X}_{\mathbf{1}} \! < \mathbf{X}_{\mathbf{3}}$. Пути кристаличации $\mathbf{Bawo}_{\mathbf{4}}$ из разных матриц обоуждахотоя с помощью приведенных в работе изотермических сечений F-Т-Х модели.

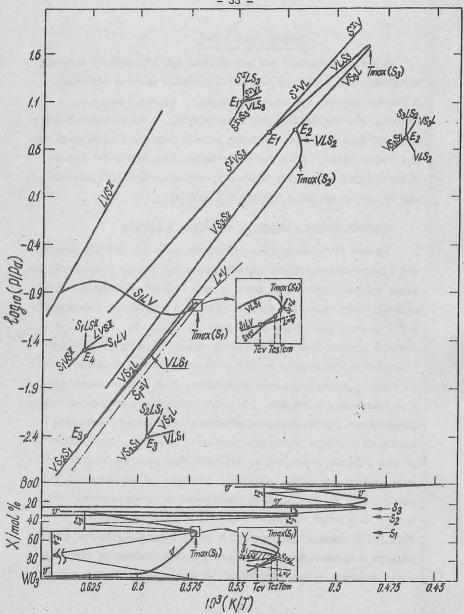


Рис. 5. Система оксид бария - триоксид вольфрама

Cnorema Bao - Zro2

В работе показано, что эта оистема при 1700-2800 К являетоя квазибинарной. Приведени F-T и T-X проекции фазовой диаграммы. В оистеме имеетоя три цирконата бария — $\mathrm{Ba}_2\mathrm{Zro}_4$, $\mathrm{Ba}_3\mathrm{Zr}_2\mathrm{o}_7$ и $\mathrm{Ba}_2\mathrm{Zro}_3$; вое они оублимируют инконгруентно, и превалирующей моле-кулярной формой в парах являетоя BaO_3 . Из всех трех цирконатов бария только BaZro_3 плавитоя конгруентно. Очерчени P-T-X области оуществования цирконатов бария и проанализирована их криоталлизация из разных матриц о помощью P-X сечений.

Системы металл - кислород - углерод - водород

Поямые экопериментальные исследования Р-Т-Х обазовых равновесий в высокотемпературных оксидных системах весьма затрушнены. Поэтому корошие перспективы имеет в этой области термодинамическое моделирование. В данном разделе приведены результаты иоследования P-T-X фазовых равновесий в системах Zr(Y, Al. Cr. Be) -C-O-H с помощью решения прямой равновесной задачи. В расчетах учитывали возможность образования не только неорганических соединений с известными термолинамическими свойствами, но и комплексов металлов о органическими диганцами. Для этого оказались необходимыми экспериментальне исследования термодинамики сублимации, испарения и плавления хелатных комплексов бериллия, алюминия, хрома, циркония. иттрия о рядом в-дикетонов. Давление пара измеряли тензиметричеоким методом; энтальпии плавления получены Г.А.Шарпатои и З.П.Озеровой в ИОНХ АН СССР методом дифференциальной сканирующей калориметрии на приборе Setaram. Основные результаты приведены в табл. ТО. С помощью этих данных, а также термодинамических свойств веществ в соответствующих системах М-С-О-Н, взятых из банка термодинамических данных ИВТАНТЕРМО, были проведены расчеты равновес-

Таблица IO. Термодинамика процессов парообразования и плавления β-дикетонатов

Комплеко	· ·	e e e e e e e e e e e e e e e e e e e)=A-B/T	. 170
CABLILMON	Процесс	T, K	A	В	∆Н°, кля/моль
Be(AA) ₂	I	381,2+0,2	660		I3,8±0,I
~	II	-	13,625	4300	82,3
	III	382-5II	II,260	3400	65,7±I,0
Be(AIM)2	I	368,1+0,2	-	•	20,0±0,I
	II	_	13,765	4400	84,2
	III	383-525	10,935	3400	65,I±0,7
Be(ToA)2	I	384,4+0,2	100	•	26,7+0,2
. 2	II	354-383	I4,645	4460	85,3+6,3
	III	387-474	II,2I4	3I 20	59,8+0,4
Be(TOA)2	I	355,4+0,2	6600	-	
~	II	289-349	14,715	3450	AND THE PARTY OF T
AI (AA)3	I	466,7+0,2	tire		33,7±0,3
. 0	II	432-464	I4,550	5300	102,0+3,2
	III	468-515	II,87I	4I00	78,7±0,9
AL (TOA)3	I	346,2+0,2			35,I±0,3
	II	324-344	I4,604	4060	77,6+6,2
	III	349-4II	11,761	3070	58,7±0,7
Cr(AA)3	I	488,9+0,5	-		34,0±0,3
	II	357-486	15,179	5900	II3,0±4,8
	III	490-536	11,891	4300	82,2+2,0
Y(AA)3	II	329-385	18,50	7280	139,3±5,0(298,15K)
Zr(AA) ₄	I	470,8+0,5		· ·	50,1+0,5
	II	335-420	I9.44	7850	I50,2+5,4(298,15K)
zr(TOA)4	I	404 ,I+0 ,5		- Can	43,0±0,4
Zr(EA)4	I	476,8+0,5	-	-	73,4+0,5
Zr(BTOA)4	I	439,8+0,5	-	-	50,9±0,4

I — плайление, II — оублимация, III — иопарение.

НАА — ацетилацетон, НДІМ — дипивалоилметан, НТФА — трифторацетилацетон, НГФА — гексафторацетилацетон, НБА — бензоилацетон, НБТФА — бензоилтрифторацетилацетон.

ных осотавов, образующихся при нагревании исследованных радикетонатов до температур 500-IIOO к в вакууме I — I 333 Па, в инертной атмосфере, в водороде и кислороде. Расчеты проведены на ЭЕМ ЕС 1060 ВЦ ИОНХ АН СССР по программе АСТРА-З (МВТУ им.Баумана). На основании приведенных в работе численных результатов очерчены F-T-Х области устойчивости оксидных, металлических и карбидных фаз в указанных системах. Результаты этих исследований переданы для использования и внедрения в организации, занимающиеся получением защитных и упрочняющих покрытий изделий новой техники.

В работе приведены акты об использовании и внедрении результатов.

BUBOILL

- 1. Выполнен комплекс работ по исследованию Р-Т-Х фазовых равновесии и тензиметрическому оканированию отклонения от стехиометрии в кристаллах в ряде полупроводниковых и оксидных систем. Установлены и описаны в численном, аналитическом и гесметрическом видах закономерные связи между термодинамическими свойствами, составами равновесных фаз в изученных системах, температурой и давлением, что представляет собой термодинамические основы направленного синтеза веществ заданного состава.
- 2. На основании анализа расположения однофазных объемов в Р-Т-Х фазовом пространстве для бинарных систем предложен прямой метод тензиметрического исследования отклонения от стехиометрии в кристаллах, находящихся в равновесии с паром произвольного молекулярного состава (тензиметрическое сканирование поверхности солидуса). Статистический анализ выведенных соотношений в зависимости от условий эксперимента показал, что с помощью статической тензиметрии можно определить состав и получить полную термо-

динамическую характеристику кристаллических фаз с узкой (порядка 0.1 ат.%) областью гомогенности.

З. Проведен Р-Т-Х анализ фазовых равновесий в бинарных системах с полиморфизмом компонентов, включая область высоких давлений. Исследованы системы с параллельным и непараллельным полиморфизмом всех возможных типов, с непрерывной и ограниченной растворимостью в кристаллическом состоянии.

Расомотрены метастабильные состояния бинарных систем в F-T-X фазовом пространстве. Прослежена связь между явлениями полимор-физма и метастабильности.

Методом F-Т-Х диаграмм проанализированы формы поверхности, образуемой линиями трехфазных равновесий при конгруэнтном и ин-конгруэнтном фазовых переходах I рода в конденсированном состоянии. Показано, что тип фазового превращения зависит только от концентрационного порядка фаз в нонвариантных равмовесиях и не овязан о существованием температурного экстремума в трехфазном равновесии.

Проанализированы F-T-х пути оублимации кристаллических фаз в замкнутом объеме и оформулированы условия, необходимые для тензиметрического исследования термодинамических свойств веществ в кристаллическом состоянии.

4. Экопериментально исследованы F-T-X фазовые равновесия в полупроводниковых системах In-Se, Cd-Te, Zn-P, Cd-P, Zn-As, Cd-As. Получены характеристики двух— и трехфазных равновесий с участием пара в этих системах, координаты нонвариантных равновесий, P-T и T-X проекции областей существования кристаллических фаз. Методом тензиметрического сканирования поверхностей солидуса исследовано отклонение от стехиометрии в селениде индия, теллуриде кадмия, фосфидах и арсенидах цинка и кадмия. Показано, что

однофазные объемы всех изученных соединений имеют концентрационную протяженность 10^{-2} – 10^{-4} ат.% и сильно асимметричны относительно стехиометрических плоскостей вследствие разной максимальной растворимости компонентов в кристаллических фазах. Для $\mbox{C}-\mbox{Z}n_3\mbox{A}s_2$ и $\mbox{C}as_2$ стехиометрические составы находятся вне областей гомогенности.

Исследована контруэнтная сублимация ${\rm Zn_3As_2}$ и ${\rm Cd_3As_2}$. Показано, что конгруэнтно сублимирующий состав ${\rm Zn_3As_2}$ изменяется с температурой. Очерчени две области параметров, в которых:

а) ${\rm Zn_3As_2}$, содержащий сверхстехиометрический мышьяк, находится в равновески с паром, состоящим практически из чистого цинка;

б) ${\rm Zn_3As_2}$ со сверхстехиометрическим цинком находится в равновесии с паром, обогащенным мышьяксм. Показано, что конгруэнтно сублимирующие состави ${\rm Cd_3As_2}$ отличаются от стехиометрии; их изменений в зависимости от температури не обнаружено.

Получени парциальние и интегральние термодинамические функции $2n_3P_2$, $2n_2$, 2n

- 5. На основании исоледования процессов парообразования в системах ВаО-WO₃ и ВаО-ZrO₂ построены Р-Т-Х фазовне диаграмми. Приведено аналитическое и геометрическое описание трехфазних равновесий с участием пара, областей существования кристаллических вольфраматов и пирконатов бария.
- 6. С помощью изобарных и изотермических сечений Р-Т-Х фазовых диаграмм исследованных систем проанализированы пути кристализации полупроводниковых соединений и окоидов из разных матриц. Определены зависимости равновесного состава кристаллов от температуры, давления и состава кристаллизуемой среды.
- 7. Исследована термодинамика прогоссов парообразования и плавления двенадцати β -дикетонатов бериллия, алиминия, хрома, циркония, иттрия. Определени энтальнии сублимации, испарения и

плавления комплексов.

Показано, что высокая кинетическая устойчивость, наряду с термодинамической метастабильностью β -дикетонатов, делает их перопективными исходными веществами для синтеза неорганических материалов.

С помощью расчетов равновесного состава определены P-T-X области существования металилческих, оксидних, карбидных фаг, образующихся при термической диосоциации изученных β -дикетонатов в вакууме, инертной, окислительной и восстановительной атмосферах.

Основные результаты опубликованы в трех монографиях, трудах тридцати Всесоюзных и Международных конференций и в статьях:

- I. Свергун В.И., Гринберг Я.Х., Кузнец В.М., Бабушкина Т.А. Константы квадрупольной связи $\mathbf{B^{II}}$ и $\mathbf{In^{II5}}$ в соединения $\mathbf{A_2^{II} B_3^{YI}}$. Изв.АН СССР, сер.химич., 1970, № 6, с.1448—I450.
- гриноерг Я.Х., Борякова В.А., Шевельков В.Ф. Исоледование испарения Inse. Изв.АН СССР, неорган.материалы, 1971, т.7,
 5, 0.769-772.
- 3. Гринберт Я.Х., Борякова В.А., Шевельков В.Ф. Термодинамические свойства In_2Se , Изв.АН СССР, неорган.материалы, 1972, т.8, 16 7, с.1206—1209.
- 4. Гриноерг Я.Х., Борякова В.А., Шевельков В.Ф., Медведева З.С. Р-Т-Х диаграмма оостояния и термодинамические овойства ${\rm In}_2{\rm Se}_3$. Изв.АН СССР, неорган.материалы, 1972, т.8, № 12, о.2099-2107.
- 5. Greenberg J.H., Borjakova V.A., Shevelkov V.F. Thermodynamic properties of In₂Se. J.Chem.Thermodynam.,1973,v.5,N 2,p.233-238.
- 6. Greenberg J.H., Lazarev V.B., Kozlov S.E., Shevchenko V.J.

 The sublimation thermodynamics of Zn₃P₂. J.Chem.Thermodynam.,

 1974, v.6, N 10, p. 1005-1012.

- 7. Lazarev V.B., Greenberg J.H., Kozlov S.E., Marenkin S.F., Shevchenko V.J. Large single crystals of Cd₃P₂, J.Crystal Growth, 1974, v.23, N 3, p.237-240.
- 8. Чистов С.Ф., Борякова В.А., Гринберг Я.Х. Дилатометрическое исследование полиморфизма In₂Se₃. Изв.АН СССР, неорган.материалы, 1974, т.10, № 8, с.1531—1532.
- 9. Демиденко А.Ф., Кощенко В.И., Гринберг Я.Х., Борякова В.А., Гастев С.В. Термодинамические и оптические свойства ${\rm In}_2{\rm Se}_3$. Изв.АН СССР, неорган.материалы, 1975, т.П. № 12, с.2I4I-2I44.
- 10. Lazarev V.B., Greenberg J.H., Shevchenko V.J. Calculations of multicomponent equilibria from total vapour pressure measurements. IV Conference Internationale de Termodynamique Chimique, 1975,v.3,p.64-66.
- II. Lezarav V.B., Greenberg J.H., Shevchenko V.J., Marenkin S.F., Kozlov S.E. Sublimation thermodynamics of Cd₃P₂. J.Chem. Thermodynam..1976. v.8.N.I.p.61-67.
- 12. Лазарев В.Б., Шевченко В.Я., Маренкин С.Ф., Козлов С.Е., Гринберг Я.Х. Термическая диосоциация соединений типа $M_{3}^{\rm II}$ Р $_{2}$. В об. Получение, овойства и применение фосфидов. Киев: Наукова дума, 1977, с.27-29.
- 13. Lazarev V.B., Greenberg J.H., Popovkin B.A. Investigation of deviation from stoichiometry by means of vapour pressure measurements. In: "Current Topics in Materials Science",ed.E.Kaldis, v.I.,North-Holland,Amsterdam, 1978,p.657-695.
- 14. Алиханян А.С., Стеблевский А.В., Гринберг Я.Х., Маренкин С.Ф., Магомедгалкиев Г.Г., Горгораки В.И. Иоследование процесса сублимации znp2. Изв.Ан СССР, неорган.материалы, 1978, т.14, № 11, о.1966-1970.

- 15. Лазарев В.Б., Гринберг Я.Х., Маренкин С.Ф., Магомедгаджиев Г.Г., Самиев С.Х. Тензиметрическое исследование отклонения от отехнометрии в $z_{n_3} r_2$. Изв.АН СССР, неорган.материалы, 1978, т.14, 11, о.1961—1965.
- 16. Лазарев В.Б., Шевченко В.Я., Гринберг Я.Х., Соболев В.В. Полупроводниковые соединения группы $A^{\Pi}B^{\mathbf{y}}$. М: Наука, 1978, 256 с.
- 17. Лазарев В.Б., Гринберг Я.Х., Маренкин С.Ф., Самиев С.Х. Исоледование Р-Т-Х фазовой длаграммы системы са-р и термодинамичеокие овойства фосфидов кадмия. Изв.АН СССР, неорган.материалы, 1979, т.15, № 7, о.1149-1154.
- 18. Кощенко В.И., Гринберг Я.Х., Демиденко А.Ф., Жегалина В.А. Температурная зависимость термодинамических овойств In₂Se₃ в интервале 5-300 К. Изв.АН СССР, неорган.материалы, 1981, т.17, № 11, с.1979-1982.
- 19. Кошенко В.И., Гриноерг Я.Х., Жегалина В.А., Ячменев В.Е., Леп-ков А.А. Температурная вавизимость теплоемкости β -In₂Se₃ в интервале 5-300 К. ВИНИТИ: 19 2817-81.
- 20. Лазарев В.Б., Гринберг Я.Х., Гуськов В.Н., Нипан Г.Д. Фазовые F-T-X диаграммы и отклонение от стехиометрии в А^ПВ^У. В кн.: XII Менделеевский съезд по общей и прикладной химии. М.: Наука, 1981, т.Т. с.69.
- 2I. Lazarev V.B., Guskov V.N., Greenberg J.H. P-T-X phase equilibria in the system Zn-As. Mat.Res.Bull., 1981, v.16, N 9, p.1113-1120.
- 22. Гриноерт Я.Х., Лазарев В.Б., Гуозков В.Н. Тензиметрическое исоледование состава пара над нестехиометрическими кристаллами и отклонения от стехиометрии. Докл.АН СССР, 1982, т.262, № 2, с.371—373.

- 23. Greenberg J.H., Guskov V.N., Lezarev V.B., Kotljar A.A.

 Solid state phase transition in Zn₃As₂. Mat.Res.Bull.,1982,
 v.17, N 10,p.1329-1335.
- 24. Нипан Г.Л., Лазарев В.Б., Гринберг Я.Х. Р-Т-Х диаграмма системы сd-As. Ж.неорган.химии, 1982, т.27, № 7, с.1788-1791.
- 25. Гуоьков В.Н., Лазарев В.Б., Гринберг Я.Х., Котляр А.А. Фазовая Р-Т-Х диаграмма опотемы Zn-As. Изв.АН СССР, неорган материалы, 1983, т.19, № 4, 0.532-537.
- 26. Greenberg J.H., Lazarev V.B., Guskov V.N. Vapour pressure investigation of non-stoichiometry in crystals. Il Nuovo Cimento, 1983, v.2D,p.1681-1686.
- 27. Гуськов В.Н., Гринберг Я.Х., Лазарев В.Б. Тензиметрическое исследование фазовых равновесии в системе цинк-мышьяк. Экспериментальные результаты. Деп. ВИНИТИ: № 56-85 Деп., М.; 1984, 76 с.
- 28. Коменко В.И., Гринберг Я.Х., Карпучок А.М., Кощенко Р.В. Термодинамические овойства In_2Se_3 в интервале 5-700 К. Изв.АН СССР, неорган.материалы, 1984, т.20, № 10, с.1765-1766.
- 29. Greenberg J.H., Guskov V.N., Lazarev V.B. Vapour pressure investigation of thermodynamics of non-stoichiometric crystals. Sublimation of β-Zn₃As₂. J.Chem.Thermodynam., 1985, v.17, N 7,p.739-746.
- 30. Guskov V.N., Greenberg J.H., Lazarev V.B. P-T-X phase diagram and non-stoichiometry of Zn₃As₂. Thermochimica Acta, 1985, v.92, R603-605.
- SI. Lazarev V.B., Alikhanjan A.S., Marushkin K.N., Greenberg J.H.
 P-T-X phase diagram and thermodynamics of barium-tungsten
 oxides. Thermochimica Acta, 1985,v.93,p.457-459.
- 32. Nipan G.D., Greenberg J.H., Lazarev V.B. P-T-X phase diagram and homogeneity range of CdAs2. Thermochimica Acta, 1985,

- v.92, p.599-602.
- 33. Nipan G.D., Greenberg J.H., Lazarev V.B. P-T-X phase relationships in the Cd-As system. Mat.Res.Bull.,1985, v.20, N 9, p.1115-1122.
- 34. Marushkin K.N., Alikhanjan A.S., Greenberg J.H., Lazarev V.B.,
 Maljusov V.A., Rozanova O.N., Melekh B.T., Gorgoraki V.I. Sublimation thermodynamics of tungsten trioxide. J.Chem.Thermodynam.,
 1985.v.17.N 3.D.245-253.
- 35. Greenberg J.H., Lazarev V.B. Vapour pressure investigation of P-T-X phase equilibria and non-stoichiometry in binary systems.

 In: Current Topics in Materials Science, v.12,ed.E.Kaldis.

 Amsterdam: Elsevier Sci.Publ.B.V.,1985,p.119-204.
- 36. Нипан Г.Д., Гринберт Я.Х., Лазарев В.Б. Никзотемпературный фазовый переход в Cd₃As₂. Ж.физ.химии, I986, т.60, № 3, с.727.
- 37. Горфунов В.Е., Гавричев К.С., Тотрова Г.А., Нипан Г.Д., Гринберг Я.Х., дазарев В.Б. Термодинамические овойотва СdAs₂ в интервале 8-300 К. Ж.физ.химии, 1986, т.60, № II, о.2884-2887.
- 38. Greenberg J.H., Lazarev V.B. Vapour pressure scanning a direct way to probe the non-stoichiometry. In: Solid State Chemistry. Proceedings of the International Symposium.K.Vary, 1986,p.52-55.
- 39. Гринберг Н.Х., Лазарев В.Б., Заверняев А.Ю., Шрейдер В.А., Чепик С.Д. Энтальпия плавления ацетилацетонатов Al(III), Cr(III), Zr(IV) и Zn(II). К.Физ.химии, 1986, т.60, % 4, с.1044.
- 40. Гринберг Я.Х., Лазерев В.Б. Заверняет А.Ю., Шрейдер А.А., четик С.Д. Термодинамические свойства ацетилацетоната алеминия. Ж. Миз. химии. 1986. т.60. № 6, с.1386—1389.
- 41. Нипан Г.Д., Гринберт Я.Х., Лазарев В.Б. Геометрическая модель Р-Т-X фазовой диаграммы системы Сd-As. Изв.АН СССР, неорган.

- материалы, 1987, т.23, № 9, с.1423-1428.
- 42. Напан Г.Д., Гринберт Я.Х., Лазарев В.Б. Метаотабильные состояния в системе Cd-AB. Изв. AH СССР, неорган.материалы, 1987, т.23, № 10, с.1596—1601.
- 43. Гороунов В.Е., Ганричев К.С., Тотрова Г.А., Гуськов В.Н., Гринберг Я.Х., Лазарев В.Б. Низкотемпературная теплоемкооть соединений Zn₃As₂ и ZnAs₂. Ж.физ.химии, 1987, т.61, № 2, с.325—329.
- Тринберг Я.Х., Петухов В.В., Новикова Г.Я., Богданов В.А.,
 Шарпатая Г.А., Озерова З.П. Термодинамические обойотва β -дикетонатов бериллия. К.физ.кимии. 1987, т.61, № 11, с.2894-2897.
- 45. Гуськов В.Н., Тринберг Я.Х., Лазарев В.Б. Термодинамические овойства 2nA₃₂. К.физ.химии, 1987, т.6I, № 7, с.1931-1934.
 - 46. Гуськов В.Н., Гринберг Я.Х., Дазарев В.Б., Котляр А.А. Тензиметрическое изучение области гомогенности β - $2n_3$ As $_2$. Е. физ. кимии, 1987, т.61, № 9, с.2329-2336.
 - 47. Гуськов В.Н., Гринберг Я.Х., Лазарев В.Б., Котляр А.А. F-Т-Х область существования р-zn₃As₂. Изв.АН СССР, неорган.материалы, 1987, т.23, № 9, с.1418-1422.
 - 48. Марушкин К.Н., Алаханян А.С., Гринберг Я.Х., Мелех Б.Т., Шароков С.Р., Горгорака В.И. Состав пара в олотеме вао-го₃. Ж.неорган.жимил, 1987, т.32, № 12, о.3036-3042.
 - 49. Алиханян А.С., Малкерова И.П., Гринберг Я.Х., Лазарев В.Б., Богданов В.А., Горгораки В.М., Прейдер В.А. Термодинамика сублимации ацетилацетонатов А1, Ст. Y. 2г. Докл. АН СССР, 1987, т.292, № 2, с.376-379.
 - 50. Гуоьков В.Н., Гринберг Я.Х., Дазарев В.Б. Тензиметрическое оканирование области гомогенности β -Zn₃As₂. Докл.АН СССР, 1987, т.292, № 3, с.651-654.
 - 51. Гриноерг Я.Х., Петухов В.В., Новикова Г.Я., Шарпатая Г.А., Озе-

- рова 3.П. Термодинамические свойства фтор-замещенных β -диге-тонатов Ве и АІ. Докл. Ан СССР, 1987, т. 297, № 3, с. 633-637.
- 52. Гриноерг Я.Х., Лазарев В.Б., Заверняев А.Ю. Поведение трисацетилацетоната хрома(Ш) при нагревании. Ж.неорган. химии, 1987, т.32, № 12, с.3IIO-3II2.
- 53. Нипан Г.Д., Гринберт Я.Х., Лазарев В.Б. Тензиметрическое исоледование Р-Т-Х фазовых равновесий в системе Сd-Ав. Экспериментальные результаты. Деп.ВИНИТИ: № 3854-В88, М., 1988, 107 с.
- 54. Тельной В.И., Быкова Т.А., Лазарев В.Б., Гринберг Я.Х. Термохимия ацетилацетонатов иттрия и циркония. Координационная химия, 1988, т.14, № 2, о.271-272.
- 55. Lazarev V.B., Greenberg J.H., Ozerova Z.P., Sharpataya G.A.

 DSC and vapour pressure investigation of some β -diketonates.

 J.Thermal Analysis,1988,v.33,N 3,p.797-799.
- 56. Алиханян А.С., Марушкин К.Н., Гринберг Я.Х., Лазарев В.Б., Гор-гораки В.И. Образование вольфраматов бария в системе вао-Wo₃.

 Ж.неорган.химии, 1988, т.33, № 6, с.1558-1561.
- 57. Alikhanjan A.S., Marushkin K.N., Greenberg J.H., Lazarev V.B., Gorgoraki V.I. P-T-X phase diagram and thermodynamics of BaO-WO3. J.Chem.Thermodynam., 1988, v.20, N 9, p. 1035-1047.
- 58. Lazarev V.B., Greenberg J.H., Ozerova Z.P., Sharpataja G.A.

 DSC and vapour pressure thermodynamics of some \$\beta\$-diketonates.

 ICth IUPAC Conference on Chemical Thermodynamics.Prague,1988,p.16
- 59. Нипан Г.Д., Гриноерт Я.Х., Лазарев В.Б. Тензиметрическое исследование термодинамики Сд₃Ав₂. Ж.физ.химии, 1989, т.63, № 2, с.325-328.
- 60. Нипан Г.Д., Гринберг Я.Х., Лазарев В.Б., Зельвенский М.Я. Тензиметрическое сканирование отклонения от стехиометрии в CdAs₂. Ж.физ.химии, 1989, т.63, М 4, с. IO42-IO47.

- 61. Нипан Г.Л., Гринберг Я.Х., Лазарев В.Б. Тензиметрическое исоледование термодинамических овойоте ссама, изв.АН СССР, неэрган. материалы, 1989, т.25, № 3, с.357-359.
- 62. Марушкин К.Н., Гринберг Я.Х., Алиханян А.С., Лазарев В.Б., Гор-гораки В.И., Мелех Б.Т. Р-Т-Х фазовая диаграмма вао-wo₃. Ж.физ.химин, 1989, т.63, № 3, о.591-597.
- 63. Нипан Г.Д., Гриноерг Я.Х., Лазарев В.Б., Зельвенский М.Я. Тензиметрическое оканирование отклонения от отехнометрил в cd_3As_2 . Изв.АН СССР, неорган.материалы, 1989, т.25
- 64. Гриноерг Я.Х., Гуськов В.Н., Лазарев В.Б., Котляр А.А., Намм А.В. Р-Т-Х фазовые равновесия в системе Сd-Тe. Локл.АН СССР, 1989, т.305, № 5, с.1152-1155.
- 65. Морозова Н.Б., Игуменов И.К., Митькин Б.Н., Краденов К.В., Потапова О.Г., Гринберг Я.Х., Лазарев В.Б. Комплекон zr(IV) с β-дикетонами. Ж.неорган. жимии, 1989, т.34, № 5, с.1193-1198.
- 66. Гринберт Я.Х., Гуськов В.Н., Лазарев В.Б., Зельвенский М.Я.
 Р-Т-Х фазовые равновесия в оистеме кадмий-теллур. Изв.АН СССР, неорган.материалы, 1989, т.25
- 67. Марушкин К.Н., Алиханян А.С., Гринберг Я.Х., Куртасов О.В., Горгораки В.И. Состав нара в системе Вво-Zrc₂ и термодинами-ческие свойства цирконатов бария. К.неорган.химии, 1989, т.34, № 6

