АКАДЕМИЯ НАУК СССР

ОРДЕНА ЛЕНИНА ИНСТИТУТ ОБЦЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ имени Н.С. КУРНАКОВА

На правах рукописи

КИРАКОСЯН ГАЙАНЭ АРТАВАЗДОВНА

ИССЛЕДОВАНИЕ КОМПЛЕКСООБРАЗОВАНИЯ
МОДОТЕМ (Ш) КИНДИЯ (Ш) МЕТОДОМ
МАГНИТНОГО РЕЗОНАНСА НА ЯДРАХ ПЕНТРАЛЬНЫХ ИОНОВ

(02.00.01 - неорганическая химия)

АВТОРЕФЕРАТ

диссертации на соискание ученой степени '
кандидата химических наук

Работа выполнена в Ордена Ленина Институте общей и неорганической к имии им. Н.С. Курнакова АН СССР Научные г ководители:

член-корреспондент АН СССР

Ю.А. Буслаев

кандидат физико-математических наук
В.П. Тарасов

Официальные оппоненты:

доктор химических наук, профессор Н.М. Синицын доктор химических наук, профессор Б.А. Ершов

Ведущая организация -

Химический факультет Московского государственного университета им. М.В. Ломоносова

Защита диссертации состоится "23" апреля 1980 года в 10 часов на заседании Специализированного совета по присуждению ученой степени кандидата наук (К 002.37.01) в Институте общей и неорганической химии им. Н.С. Курнакова АН СССР по адресу: г. Москва, 117071, Ленинский проспект, 31.

С диссертацией можно ознакомиться в библиотеке химической литературы АН СССР.

Автореферат разослан " 19 " марта 1980 года.

ученый секретарь Специализированного совета кандидат химических наук дишиший И.Ф. Аленчикова

XAPAKTEPUCTUKA PABOTH.

Актуальность проблемы. Галогениды алюминия и галлия, обладающие сильными акцепторными свойствами, имеют большое практическое значение и находят применение в препаративных целях и в промышленности как катализаторы в реакциях формилирования, алкилирования и ацилирования ароматических углеводородов, присоединения алкил— и ацилгалогенидов к олефинам, хлорирования бензола и во многих других реакциях органического синтеза. Комплексообразование галогенидов алюминия с органическими растворителями делает возможным выделение металлического алюминия на катоде при электролизе неводных растворов, что исключительно важно для получения антикоррозионных гальванопокрытий.

Для суждения о характере каталитических процессов, протекающих в присутствии MXR (M = AI, Ga; X = CI, Br, I), и решения ряда проблем электрохимии и неорганической биохимии необходимы данные о составе и строении комплексов AI(Ш) и Ga(Ш) именно в жидкой фазе. Имеющийся в настоящее время интерес к исследованию комплексообразования алюминия (Ш) и галлия (Ш) в неводных растворах определяется, конечно, не только их практической значимостью. Наличие в растворах некоторых органических растворителей равновесия между гекса- и тетракоординационными комплексами АІ(Ш) и Ga(Ш) открывает новые возможности изучения замещения и совместимости лигандов в координационной сфере М(Ш) определенной конфигурации. Выявление лигандов, которые предпочтительно входят во внутреннюю сферу алюминия (Ш) и галлия (Ш) октаздрического или тетраздрического строения, и сопоставление их донорных свойств по отношению к АГ(Ш) и Са(Ш) имеет большое значение для синтеза новых координационных соединений. Между тем, факторы, определяющие соотношение между тетра- и гексакоординационными формами и конфигурацию разнолигандных комплексов, исследованы мало.

Скандий изучен в меньшей степени, чем алюминий и галлий. Сведения о состоянии Sc(Ш) в неводных средах крайне ограничены. Исследование комп ексообразования Sc(Ш) в растворах может оказаться полезным для лонимания механизмов экстракционных процессов, которые играют важную роль в технологии получения скандия в чистом виде.

Цель работы заключалась в исследовании комплексообразования алюминия (Ш), галлия (Ш) и скандия (Ш) в неводных растворах их галогенидов при наличии конкурирующих ацидо— и молекулярных лигандов для определения влияния сольватирующей способности растворителей, размеров их молекул, природы аниона на состав и строение комплексных форм в растворе. Чтобы установить предпочтительную конфигурацию комплексов алюминия и галлия с каждым из рассмотренных лигандов и сопоставить донорную способность последних по отношению к центральным ионам были изучены реакции замещения лигандов в тетра— и гекса—координационных формах при их совместном присутствии. С целью сравнения состояния в растворах алюминия (Ш) и галлия (Ш), с одной стороны, и d° —переходного элемента Sc(Ш) — с другой — было проведено исследование аналогичных систем, содержащих АІ (Ш), Ga(Ш) и Sc(Ш).

Научная новизна. Проведено систематическое исследование комплексообразования АІ(Ш), Ga(Ш) и Sc(Ш) в неводных растворах, содержащих галогениды алюминия, галлия и скандия и конкурирующие ацидомили молекулярные лиганды (ионы галогенов, роданид-, цианат-ионы; нитрилы, спирты, вода, дизамещенные амиды кислот). Установлено, что находящиеся в равновесии гекса- и тетракоординационные комплексы АІ(Ш) и Ga(Ш) в зависимости от природы конкурирующих лигандов могут переходить из одной структурной формы в другую, проявляя конфигурационную лабильность. Показано, что на донорные свойства мо-

лекулярных лигандов по отношению к АІ(Ш) и Са(Ш) влияет строение координационной сферы, в которой находится центральный ион. Найдено, что в спиртовых растворах галогенидов алюминия и галлия существуют долгоживущие сольватно-разделенные ионные пары, образованные за счет водородных связей ОН-групп и ван-дер-ваальсова взаимолействия СН2- и СН2-групп молекул спирта с ионами галогена. Получены кристаллические сольваты AIX3°nROH (X = CI, Br; ROH = CH3OH, C2H5OH; n = 4, 6) и выявлено, что их состав определяется в основном сольватирующей способностью спиртов и прочностью связи АІ-Х. Методом ЯМР ²⁷АІ и ⁷¹ да однозначно доказана координация родания- и цианатионов к алюминию (Ш) и галлию (Ш) через атом азота. Установлено, что изотионианато- и изонианатогалогенилные комплексы АІ(Ш) и Ga(Ш) имеют псевдотетраздрическую конфигурацию, а полное удаление ионов галогена из внутренней сферы алюминия сопровождается увеличением координационного числа AI(Ш) до 6. На основании анализа величин полностью приведенных констант спин-спинового взаимодействия $^{27}{
m AI-}^{14}{
m N}$ и 71 Ga $^{-14}$ N и известных структурных данных сделан вывод о наличии в случае изотиоцианатохлоридных комплексов AI(Ш) и Ga(Ш) корреляции между 8-характером связи M-N и ее прочностью. Впервые методом ЯМР 45Sc высокого разрешения изучено взаимодействие хлорида скандия с ацидо- и молекулярными лигандами в неводных растворах. Показано, что во всех изученных комплексах Sc (Ш) имеет гексакоординационное окружение, в состав которого могут входить один, два и все три конкурирующих лиганда. Установлено, что величины химических сдвигов сигналов ЯМР 45 Sc катионов [ScL $_{6}$] $^{3+}$ (L - кислороддонорный нейтральный лиганд) можно использовать для оценки донорной способности лигандов по отношению к Sc(Ш). Определены ранее неизвестные парные параметры ріі и аддитивные параметры 7 Sc-L, 4TO

может быть использовано для расчета химических сдвигов сигналов тетраэдрических комплексов АІ(Ш) и Ga(Ш) и октаэдрических форм Sc(Ш) с произвольным набором лигандов.

Практическая ценность. Результаты данной работы представляют значительный интерес в плане развития координационной химии элементов Ш группы и теории комплексообразования в растворах. Изученные особенности равновесия между тетра- и гексакоординационными комплексами AI(Ш) и Ga(Ш) позволяют судить о взаимном влиянии и совместимости лигандов в координационной сфере определенной конфигурации. что имеет также значение при разработке методов направленного синтеза новых химических соединений. Параметры спектров ЯМР 27 АІ. 45 с и 69,71 са исследованных систем могут применяться для модельных теоретических расчетов, для идентификации комплексов AI(Ш), Ga(Ш) и 5с(Ш) в растворах, для оценки относительной донорной способности лигандов. Характеристики спектров ЯМР ²⁷АІ и ⁷¹Ga растворов МХ₂ -- CH_QCN - KNCS использовались для разработки оптимальных блоков детектирования сигналов ЯМР при создании новых модификаций радиоспектрометров фирмы "Varian" (Varian Instrument Applications Report. 1979, No 1).

Методы исследования. В качестве основного метода исследования в работе использовался метод ядерного магнитного резонанса на ядрах 1 H, 27 AI, 35 CI, 45 Sc и 69 , 71 Ga, который отличается высокой чувствительностью и позволяет устанавливать состав, конфигурацию и концентрации комплексных форм, находящихся в равновесии в растворе. Запись спектров ЯМР проводили на радиоспектрометрах фирмы "Varian" WL - II2, A 56/60A, XL - IOO - I5" и XL - 200 в широком диапазоне температур. Рентгенофазовый анализ кристаллических сольватов проводили по методу порошка на дифрактометре "Hitachi"

Апробация работы и публикации. Результаты настоящей работы были представлены на XI Всесоюзном совещании по физическим и математическим методам в координационной химии (Кишинев, 1977г.), П советско-немецком микросимпозиуме по химии неорганических галогенидов (Москва, 1977г.), Республиканской конференции по химии и технологии редких и цветных металлов и солей (Фрунзе, 1977г.), семинарах по радиоспектроскопическим методам исследования неорганических и координационных соединений (Краснодар, 1978 и 1979гг.), XX конгрессе АМПЕРА (Таллин, 1978г.), научных конференциях ученых Института общей и неорганической химии им. Н.С. Пурнакова АН СССР (1977 и 1978гг).

По теме диссертации опубликовано 12 печатных работ.

Объем и структура работы. Диссертационная работа изложена на 178 страницах машинописного текста, содержит 18 таблиц, 33 рисунка и список из 220 наименований использованной литературы.

диссертация состоит из введения, пяти глав и выводов. В первой главе дан обзор литературы, посвященной исследованию факторов, влияющих на состав и строение комплексов алюминия, галлия и скандия как в растворах, так и кристаллическом состоянии. Особое внимание уделялось рассмотрению применения метода ЯМР для решения подобных проблем. В главах со второй по пятую приведены результаты собственних исследований и их обсуждение.

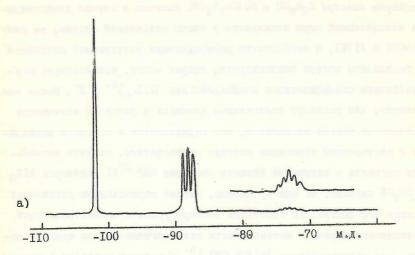
mentioned, marketing a second of the late of the late

солержание РАБОТЫ.

Диспропорционирование галогенидов аломиния в растворах нитрилов.

Галогени ы алюминия диспропорционируют в ацето-, бензо- и адипонитриле по уравнению (I)

 $2AI_2X_6 + 6L$ — $3[AIX_4]^- + [AIL_6]^{3+}$, (I) причем в спектрах ЯМР 27 АІ наблюдаются раздельные сигналы от тетраэдрических анионных и октаэдрических катионных комплексов. Сигнал в катионной области спектров ацетонитрильных растворов AIX_3 имеет сложную форму и состоит из нескольких перекрывающихся линий. В отличие от этого, в спектрах ЯМР 27 АІ бензонитрильных и адипонитрильных растворов содержится один узкий сигнал, обусловленный $[AIL_6]^{3+}$ (L = C_6H_5 CN, NC (CH₂)₄CN).


Стерические факторы и различия в донорных свойствах молекул нитрилов не объясняют наблюдаемых особенностей спектров ацето-, бензо- и адипонитрильных растворов галогенидов алюминия; решающее значение, по-видимому, имеют размеры молекул растворителя и распределение в них электронной плотности.

Известно, что в ацетонитрильных растворах галогенидов алюминия существуют различные ионные агрегати. Образование ионных ассоциатов обусловлено не только электростатическим взаимодействием комплексов с противоположными зарядами, но и возможностью специфического взамимодействия координированных молекул ацетонитрила через протоны метильных групп с X^- , которые присутствуют в растворе за счет некоторой диссоциации [AIX4] $^-$. Очевидно, электростатическое взаимодействие катионов [AIL 6] $^3+$. где L — бензо— и адипонитрил, с анионом будет слабее, чем в случае растворов в CH_3CN , благодаря большим

размерам молекул $C_{6}H_{5}CN$ и NC (CH_{2}) $_{4}CN$. Наличие в случае адипонитрила неподеленной пары электронов у азота нитрильной группы, не связанной с AI (W), и особенности распределения электронной плотности в бензольном кольце бензонитрила, скорее всего, препятствуют осуществлению специфического взаимодействия [AIL $_{6}$] $^{3+}$ с X^{-} . Можно заключить, что растворы галогенидов алюминия в нитрилах отличаются прочностью ионных ассоциатов, что определяется в основном размерами и электронным строением молекул растворителя. Наличие нескольких сигналов в катионной области спектров 27 AI растворов 27 AI растворов 27 AI растворов 27 AI в 2

2. <u>Строение изотиоцианато- и изоцианатогалогенидных</u> комплексов алюминия (Ш) и галлия (Ш) в растворе.

В ацетонитрильных растворах галогенидов алюминия и галлия в равновесии находятся тетра— и гексакоординационные комплексы. При введении в эти растворы роданида калия катионная форма [М (CH $_3$ CN) $_6$] $^{3+}$ разрушается и происходит постепенное замещение ионов галогена в координационной сфере [MX $_4$]— на NCS $^-$, в результате которого образуются комплексы [MX $_{4-n}$ (NCS) $_n$]— псевдотетраэдрической конфигурации. При этом в спектрах ЯМР 27 AI и 71 Ga растворов MCI $_3$ + KNCS + CH $_3$ CN помимо сигналов от [MCI $_4$]— в более сильном поле фиксируются мультиплетные сигналы (рис. I). Наблюдаемая триплетная и квинтетная структура сигналов обусловлена спин-спиновым взаимодействием 27 AI $_n$ и 71 Ga $_n$ 14N, скалярная природа которого подтверждается спектрами

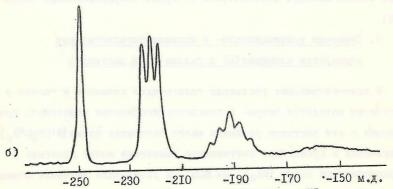


Рис. I. Спектры ЯМР 27 АІ (52,14 Мгц – а) и 71 Са (30,5 Мгц – б) растворов МСІ $_3$ + KNCS + CH $_3$ CN при NCS/М(Ш) = I,4(а) и \sim 3(б).

ЯМР ²⁷АІ и ⁷¹Са, записанными на разных частотах. Наличие в спектрах мультиплетности сигналов, во-первых, указывает на то, что координация NCS-групп несомненно осуществляется через атом азота, а во-вто-

рых, позволяет сделать однозначный вывод о количестве роданид-ионов, связанных с алюминием или галлием: триплет обусловлен анионом [MCI3(NCS)], а квинтет - [MCI2(NCS)2].

Химические сдвиги сигналов ЯМР хорошо согласуются со значениями, рассчитанными по модели парной аддитивности для комплексов с тетраэдрическим расположением заместителей.

При больших величинах отношения NCS/AI ионы хлора или брома вытесняются из внутренней сферы AI(Ш), и в растворах существует только октаздрический анион $[AI(NCS)_6]^{3-}$; не зафиксировано образования тетраздрического комплекса $[AI(NCS)_4]^-$. Т.е. для NCS-, как и для нейтральных азотдонорных лигандов, характерно координационное число AI(Ш) 6. В следствие этого при замещении СI- или Br- на NCS- проявляется конфигурационная лабильность координационной сферы AI(Ш).

В спектрах растворов, содержащих как GaI_3 , так и $GaCI_3$, не наблюдаются сигналы, которые можно было бы приписать $[Ga(NCS)_4]^-$ или $[Ga(NCS)_6]^{3-}$; это значит, что даже при большом избытке KNCS(NCS/Ga $\geqslant 10$), в отличие от растворов $AICI_3$, NCS не замещает полностью ионы иода или хлора в $[GaX_4]^-$. Этот факт свидетельствует, по-видимому, о том, что связь Ga-NCS слабее, чем связь AI-NCS, т.к. энергии диссоциации $[GaCI_4]^-$ и $[AICI_4]^-$ равны.

Пианат-ион также замещает СІ в [MCI $_4$] , что приводит к образованию комплексов [MCI $_{4-n}$ (NCO) $_n$] . Даже при больших значениях отношений NCO/M в спектрах ЯМР 27 АІ и 71 Ga сохраняются интенсивные сигналы от тетрахлоридных анионов. Это указывает на то, что NCO является более слабым лигандом по отношению к АІ(Ш) и Ga(Ш), чем роданид-ион.

В разнолигандных анионных комплексах, содержащих галогениди псевдогалогенид-ионы, АІ(Ш) и Ga(Ш) имеют тетракоординационнос собружение. Следует отметить, что стабилизация тетраэдрической конфигурации координационной сферы при наличии в ней ионов галогена является характерной чертой алюминия и галлия в изученных системах.

Проявление спин-спинового взаимодействия между двумя квадрупольными ядрами 27 AI_I4N и 7I Ga_I4N указывает на то, что градиент электрического поля в месте расположения ядер азота близок к нулю, вероятно, благодаря перераспределению заряда на ионах NCS и NCO при их координации. В таблице І представлены экспериментальные значения констант спин-спинового взаимодействия (КССВ), КССВ по Поплу (К) и полностью приведенные константы Сми, рассчитанные с учетом контактного члена Ферми. При переходе от галлия к алюминию. а также при увеличении числа NCS-групп в координационной сфере значения констант возрастают, что соответствует большему вкладу валентных 5-электронов в химическую связь. На основании изменений в спектрах Ямр ²⁷AI и ⁷¹Ga можно предположить уменьшение прочности связи 'M-NCS в изотиоцианатохлоридных комплексах при замене алюминия на галлий. А если это так, то приведенные данные по КССВ металл-азот являются примером корреляции вклада валентных \$-электронов с прочностью связи.

Таблица I. Константы спин-спинового взаимодействия AI-N и Ga-N.

Анион	Y _{MnS(O)} 2	Ј , гц	K·IO ⁻²⁰ (cm ⁻³)	C-10 ³⁰ (cm ³)
[CI3 ²⁷ AI(NCS)]-	2,41	40	177,13	34,2
[CI327AI(NCO)] -	2,41	4 0	177,13	34,2
[CI2 ²⁷ AI(NCS)2]-	2,41	45	199,27	38,5
[CI3 ^{7I} Ca (NCS)]	7,16	95	359,15	23,3
[CI2 7ICa (NCS) 2]-	7,16	II5	434,76	28,2

3. Конфигурационная дабильность и реакции комплексообразования тетра- и гексакоординационных соединений алюминия (Ш) и галлия (Ш) в растворе.

Введение в ацетонитрильные растворы галогенидов алюминия и галлия низших алифатических спиртов, которые могут конкурировать как с молекулами CH_3CN в $[\text{M}(\text{CH}_3\text{CN})_6]^{3+}$, так и с ионами галогенов в $[\text{MX}_4]^-$, позволяет изучать реакции замещения и совместимость литандов в комплексах с различной конфигурацией координационной сферы, что несомненно имеет значение для суждения о природе конфигурационной лабильности AI(Ш) и Ga(Ш).

В результате взаимодействия ROH с гекса- и тетракоординационными формами алюминия и галлия в растворе образуются комплексы $[M(CH_3CN)_{6-n}(ROH)_n]^{3+}$ и $[MX_{4-n}(ROH)_n]^{n-1}$, относительные концентрации которых изменяются при увеличении $R \equiv ROH/M(\mathbb{U})$. Наличие в спектрах ПМР растворов $MX_3 - CH_3CN - ROH$ мультиплетности сигналов ОНгрупп координированных молекул спирта указывает на отсутствие протонной диссоциации спиртов и свидетельствует о разрыве межмолекулярных водородных связей и выходе молекул ROH из сферы обмена при их координации.

Экспериментальные данные показывают, что системы MX_3 - CH_3CN - ROH характеризуются достаточно сложными равновесиями. В растворах хлорида галлия молекулы этанола одновременно замещают в комплексах $Ga(\mathbb{H})$ и молекулы CH_3CN , и ионы хлора. С ростом R наблюдается увеличение доли хлороспиртовых форм. При $R \sim I$ в растворе существует ряд комплексов примерно в следующих отношениях: $0,I[Ga(CH_3CN)_6]^{3+}$, $0,I5[Ga(CH_3CN)_{6-n}(ROH)_n]^{3+}$, $I,I[GaCI_4]^-$ и $0,72[GaCI_{4-n}(ROH)_n]^{n-I}$ с явным преобладанием двух последних. Можно заключить, что этанол предпочтительно вытесняет CI^- из координационной сферы тетраэдрического аниона $[GaCI_4]^-$, в отличие от молекул воды, которые преимущес-

твенно входят в октаздрические катионные комплексы.

Введение спиртов в ацетонитрильные растворы хлорида алюминия $(R \sim 0, 2)$ вызывает диссоциацию тетрахлороалюминат-иона по уравнению

[AICI₄] -
$$\frac{\text{CH}_3\text{CN}}{\{\text{ROH}\}}$$
 [AICI_{4-n}(CH₃CN)_n]ⁿ⁻¹ $\frac{\text{CH}_3\text{CN}}{\{\text{ROH}\}}$ [AI(CH₃CN)₆]³⁺. (2)

В присутствии метанола в растворе накапливается [AI($\mathrm{CH_3CN}$)₆]³⁺, о чем свидетельствует увеличение более, чем в 2 раза, среднего сольватного числа AI(Ш) по ацетонитрилу. В случае этанола диссоциация останавливается на первой стадии, в спектрах ПМР при этом возникает второй сигнал метильных протонов координированных молекул $\mathrm{CH_3CN}$.

Процесс диссоциации [AICI $_4$] и смещение равновесия в сторону катионных форм приводит к тому, что в системах AICI $_3$ - CH $_3$ CN - ROH происходит преимущественное образование гексакоординационных комплексов [AI(CH $_3$ CN) $_{6-n}$ (ROH) $_n$] $^{3+}$, а тетракоординационные формы [AICI $_{4-n}$ (ROH) $_n$] $^{n-1}$ появляются в незначительных количествах при R близких к I. Следует подчеркнуть, что совместимость молекул спирта и ионов хлора в тетракоординационных комплексах Ga(Ш) больше, чем в координационной сфере AI(Ш) такой же конфигурации.

Сопоставление относительных концентраций гекса— и тетракоординационных смешанных комплексов в системах MX_3 — CH_3CN — L ($L=H_2O$, CH_3OH , C_2H_5OH) позволяет сделать вывод, что донорные свойства лигандов по отношению к AI(W) и Ga(W) зависят от строения координационной сферы, в которой находится центральный ион, что делает возможным построение рядов донорной активности конкурирующих лигандов для комплексов тетраздрической и октаздрической конфигурации. В качестве критерия использованы отношения $\mathbf{E}[M(CH_3CN)_{6-n}(ROH)_n]^3$ [$M(CH_3CN)_{6}$] и $\mathbf{E}[MCI_{4-n}(ROH)_n]^{N-1}$ [MCI_{4}] — чем больше данные отношения при одном и том же значении \mathbf{R} , тем выше способность жигандов вытеснять $\mathbf{C}I^-$ или $\mathbf{C}H_3CN$ из комплексов соответствующей конфигурации. Донорный

ряд для галлия в гексакоординационном окружении — $H_2O > C_2H_5OH > CH_3CN > CI^-$, а для тетракоординационных комплексов галлия последовательность иная: $C_2H_5OH > H_2O > CI^- > CH_3CN$. Для комплексов AI(Ш) с координационным числом 6 способность к замещению CH_3CN уменьшается в ряду $C_2H_5OH > H_2O > CH_3OH >> CI^-$, Br^- . В случае алюминия(Ш) с тетраздрическим расположением заместителей донорный ряд имеет слелующий вид: $C_2H_5OH > CH_3OH > H_2O > CI^-$, $Br^- > CH_3CN$. Следует подчеркнуть, что впервые экспериментально показанная на примере AI(Ш) и Ga(M) зависимость донорных свойств лигандов от состава внутренней сферы и типа координационного полиэдра, по-видимому, носит общий характер, что необходимо принимать во внимание при изучении комплексообразования центральных ионов, способных к реализации различных координационных чисел.

Концентрация гекса— и тетракоординационных комплексов в растворах ${\rm AICI}_3$ — ${\rm CN-C}_2{\rm H}_5{\rm OH}$ с ростом R изменяется немонотонно (табл. 2). При появлении в системе свободных молекул спирта (${\rm R}\sim 5$) количество хлороспиртовых форм резко сокращается, и в чистом этанольном растворе хлорида алюминия 85% ${\rm AI}$ (${\rm III}$) находится в виде ${\rm [AICI}({\rm C}_2{\rm H}_5{\rm OH})_3{\rm I}^{2+}$. В метанольном растворе ${\rm AICI}_3$ вообще нет тетракоординационных хлорсодержащих катионов, что объясняется более сильными по сравнению с ${\rm C}_2{\rm H}_5{\rm OH}$ сольватирующими свойствами ${\rm CH}_3{\rm OH}$ по отношению и к ${\rm AI}$ (${\rm III}$), и к ${\rm CI}^-$.

Таблица 2. Содержание алюминия(Ш) в гекса- и тетракоординационных комплексах в растворах $AICI_3-CH_3CN-C_2H_5OH$ при различных R.

R	Σ[AI(CH ₃ CN) _{6-n} (C ₂ Ĥ ₅ OH) _n] ³⁺ , % AI(Ш)	Σ[AICI _{4-n} (C ₂ H ₅ OH) _n] ^{n-I} , % AI(Ш)	[AICI ₄]-, % AI(W)
I,24	39	31	30
I,88	30	50	20
2,72	23	62	14
5,52	63	37	

Для комплексов галлия более характерно сохранение связи Ga-CI. Это справедливо и для метанольных растворов GaCI_3 , где, по-видимому, не менее 50% $\mathrm{Ga}(\mathbb{H})$ находится в виде $\mathrm{[GaCI}_4]^-$. В растворе присутствуют такж $\mathrm{[Ga}(\mathrm{CH}_3\mathrm{OH})_6]^{3+}$, $\mathrm{[GaCI}(\mathrm{CH}_3\mathrm{OH})_3]^{2+}$ и $\mathrm{[GaCI}_2(\mathrm{CH}_3\mathrm{OH})_2]^{\frac{1}{2}}$

Можно за слючить, что соотношение между гекса— и тетракоординационными комплексами в растворах с конкурирующими лигандами, MX_3 — CH_3CN — ROH и MX_3 — ROH, определяется как энергиями сольватации аниона и катиона молекулами спирта, прочностью связи M-X, так и, в особенности, взаимным влиянием лигандов в координационной сфере $M(\mathbb{H})$ данной конфигурации.

4. Образование сольватно-разделенных ионных пар в растворах хлоридов алюминия и галлия в спиртах.

Значения среднего сольватного числа АІ(Ш), полученные из спектров имР спиртовых растворов AICI3, свидетельствуют о том, что в растворах метанола AI(Ш) присутствует в виде [AI(CH_3OH), в этанольных растворах основной формой является [АІ(Соньон) с] 3+ и имеются небольшие количества [AICI(C₂H₅OH)₃]²⁺. Между тем в спектрах имР спиртовых растворов ниже определенных температур наблюдаются два сигнала, которые соответствуют гидроксильным протонам молекул спирта в координационной сфере [AI (ROH) 6] 3+. Температурная и концентрационная зависимость сигналов, расположенных в более слабом поле, согласуется с представлением, что они обусловлены водородной связью, и поэтому мы отнесли их к протонам ОН-групп фрагмента CI ... H-O(R)-AI. При понижении диэлектрической проницаемости среды в результате введения ССІ_л концентрация таких сольватно-разделенных ионных пар увеличивается, что находит отражение в спектрах ПМР. В спектрах ЯМР 27 АІ метанольного раствора АІСІ, содержатся два сигнала с химическими сдвигами, характерными для АІ(Ш) в гексакоординационном окружении, которые отвечают ионно-парному сольватноразделенному комплексу $\{[AI(CH_3OH)_6]CI\}^{2+}$ и катиону $[AI(CH_3OH)_6]^{3+}$.

Следует отметить, что и доля, и устойчивость ионно-парных комплексов в этанольных растворах больше, чем в растворах метилового спирта, что подтверждается различием в интенсивностях и температурах появления сигналов, обусловленных гидроксильными протонами в СГ...НО(R)-АІ. Вероятно, водородная связь является не единственным фактором, влияющим на образование сольватно-разделенных ионных пар. Относительная прочность ионно-парного комплекса может, по-видимому, определяться и особенностями пространственного расположения цепей СН₃-СН₂-ОН, координированных к алюминию. Удлинение цепи спирта на СН₂-группу при переходе от метанола к этанолу может приводить к стабилизации указанного комплекса за счет дополнительного ван-дер-ваальсова взаимодействия иона хлора с протонами метильных и метиленовых групп. Модель ионно-парного сольватокомплекса, существующего в этанольных растворах хлорида алюминия, представлена на рис. 2.

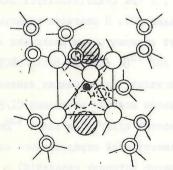


Рис. 2. Модель ионно-парного сольватокомплекса в растворе ${
m AICI}_3$ - ${
m C}_2{
m H}_5{
m OH}$ с предельным числом ионов хлора.

В спектрах ПМР растворов хлорида галлия в метаноле также зафиксированы сигналы, соответствующие гидроксильным протонам, участвующим в водородной связи с ионом хлора. Таким образом, образо-

вание устойчивых сольватно-разделенных ионных пар является отличительной чертой спиртовых растворов галогенидов алюминия и галлия.

Если принять во внимание данные по скоростям обмена молекул спирта и других молекулярных лигандов в координационной сфере ряда комплексообразователей, можно предположить, что обмен в спиртовых растворах замедлен именно благодаря образованию сольватно-разделенных ионных пар со временем жизни $10^{-3} - 10^{-4}$ сек. Ион хлора за счет водородных связей и ван-дер-ваальсова взаимодействия с координированными молекулами спирта затрудняет их выход из внутренней сферы $AI(\mathbb{H})$ и $Ga(\mathbb{H})$.

5. Разнолигандные комплексы Sc(Ш) в растворах ацетонитрила.

В ацетонитрильных растворах хлорида скандия не происходит диссоциации или характерного для галогенидов непереходных элементов Ш группы диспропорционирования ScCI3. В растворе существует аддукт $S_{CCI_2} \cdot _{X}CH_2CN$ (скорее всего x = 3). В результате введения роданида калия в ацетонитрильный раствор \$сСІз идет замещение ионов хлора в координационной сфере Sc (Ш) на NCS, о чем свидетельствует выделение из системы ScCI3-KNCS-CH3CN осадка КСІ. В растворе образуютея комплексы скандия (Ш), которые могут содержать три различных лиганда, CI⁻, NCS⁻ и CH₂CN. В спектрах ЯМР ⁴⁵Sc системы ScCI₂-КNCS--CH2CN одновременно фиксируются II сигналов. На основании изменения интенствностей линий при варьировании мольных отношений СІ/Sc и NCS/Sc и линейной зависимости химических сдвигов сигналов 45Sc октардрических комплексов от числа заместителей определенного сорта было проведено полное отнесение, согласно которому скандий (ш) в растворе находится в виде гексакоординационных комплексов различного состава (табл. 3). Необходимо подчеркнуть, что донорная способность ацетонитрила по отношению к Sc (Ш) сопоставима с силой ацидолигандов СТ- и NC5-. Молекулы CH3CN участвуют в формировании координационной

сферы скандия, причем образующиеся комплексы и анионы [$Sc(NCS_{6-n}CI_n)^{3-n}$ имеют, судя по спектрам, константы устойчивости одного порядка. Это является существенным отличием растворов, содержащих $Sc(\mathbb{H})$, от аналогичных систем $AI(\mathbb{H})$ и $Ga(\mathbb{H})$, где при введении NCS^{-n} молекулы растворителя не входили в состав галогенидоизотиоцианатных комплексов алюминия и галлия. В связи с этим следует отметить, что формы скандия [$Sc(NCS)_{6-n}CI_nI^{3-n}$ гексакоординационны, в то время как анионы $AI(\mathbb{H})$ и $Ga(\mathbb{H})$ имеют тетраэдрическую конфигурацию. Различное строение хлороизотиоцианатных комплексов $AI(\mathbb{H})$ и $Ga(\mathbb{H})$, с одной стороны, и $Sc(\mathbb{H})$ — с другой — может быть следствием наличия у скандия (\mathbb{H}) низко энергетических Sd —орбиталей, что благоприятствует проявлению более высских координационных чисел.

Таблица 3. Комплексы, идентифицированные в растворах $\mathfrak{S}cCI_3$ - KNCS - $\mathfrak{CH}_3\mathsf{CN}$.

Комплекс	Химические сдвиги отн. [$\S_c(H_2^0)_6]^{3+}$, м.д.		
ngt alimengajob, Josep	расчет	эксп. ± 5 м.д.	
[SoCI4 (CH3CN)2]-	-212	-204	
[ScCI3 (CH3CN)3]	-191		
[Scci3(CH3CN) 2 (NCS)] -	-I74	-I78	
[Scci2(CH3CN)3(NCS)]	-151	-149	
[ScCI2(CH3CN)2(NCS)2]-	-137	-138	
[ScCI2(CH3CN)(NCS)3]2-	-I2O	-I2I	
[ScCI2(NCS)4] 3-	-103	-102	
[Scci (CH3CN) 2(NCS)3]-	- 97	- 92	
[Scci (CH3CN) (NCS)4]2-	-80	- 83 (F) (F)	
[ScCI (NCS)5]3-	- 66	- 66	
[Sc (NCS)5 (CH3CN)] 2-	- 44	- 40	
[Sc(NCS)6]3-	- 27	- 27	

6. Взаимодействие хлорида скандия с N, N -дизамещенными амидами в растворах.

В результате взаимодействия хлорида скандия с диметилформамидом (ДМАА) в ацетонитрильном растворе образуются гексакоординационные комплексы [$ScCI_{6-n}L_n$] $^{n-3}$ (n=2+6), которым в спектрах ЯМР 45 Sc соответствуют раздельные сигналы. В растворах протекает ступенчатая диссоциация и в небольшой степени диспропорционирование $ScCI_3$, о чем свидетельствует присутствие аниона [$ScCI_4L_2$] $^-$. Согласно спектрам в растворах ДМФА основной формой является [$ScCI_3$ (ДМФА) $_3$], а в растворах ДМАА – [$ScCI_2$ (ДМАА) $_4$] $^+$. В отличие от систем, содержащих ДМАА, в случае ДМФА в растворе отсутствует катион [$Sc(I_MФA)_6$] $^{3+}$. Это указывает на более сильные по отношению к Sc(II) донорные свойства ДМАА по сравнению с ДМФА.

Тетраметилмочевина (ТММ) и гексаметилфосфорамид (ГМФА) также взаимодействуют с хлоридом скандия в ацетонитриле, причем при малых отношениях L/Sc в растворе образуются комплексы, содержащие три различных лиганда, СГ, L и СН3СN. При увеличении L/Sc ацетонитрил полностью замещается в координационной сфере Sc (Ш)молекулами L.

В системах $ScCI_3$ - CH_3CN - L (L = ДМФА, ДМАА, ТММ и ГМФА) ион хлора не вытесняется из внутренней сферы $Sc(\square)$, в растворах существует равновесие между $[ScL_6]^{3+}$ и хлорсодержащими формами, что является следствием слабых сольватирующих свойств рассмотренных амидов по отношению к аниону CI^- .

На основании сопоставления величин донорных чисел амидов по Гутману (\mathbb{A}^4 Sc $_5$) и химических сдвигов \mathbb{A}^4 Sc было сделано предположение, что различия в экранировании ядра \mathbb{A}^5 Sc в катионах [ScL $_6$] \mathbb{A}^3 + можно использовать в качестве критерия донорной способности лигандов по отношению к Sc(\mathbb{A}^3). Тогда в соответствии с величинами хими-

ческих сдвигов сигналов ⁴⁵Sc донорная активность лигандов по отношению к Sc(Ш) возрастает в ряду ДМФА < ДМАА < ТММ < ГМФА < вода.

7. <u>Образование хлороаквакомплексов скандия(Ш) в водных</u> растворах.

Введение в водные растворы хлорида скандия соляной кислоты способствует замещению координированных к \$c(Ш) молекул воды ионами хлора, что подтверждается изменением положения сигнала ЯМР \$45\$ с системы \$cCl_3-H_2O-HCl (рис. 3). В спектрах ЯМР \$45\$ с раствора \$cCl_3 в концентрированной соляной кислоте (~IOH) зафиксирован сигнал с химическим сдвигом -I43 м.д. Пропускание через этот раствор газообразного хлористого водорода приводит к смещению сигнала в спектрах до -I70 м.д., что является предельно достижимым значением для водных растворов.

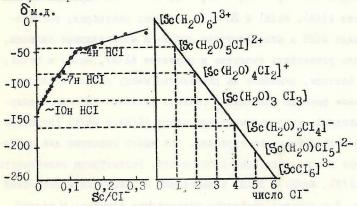


Рис. 3. График зависимости химического сдвига сигнала ЯМР 45 Sc растворов ScCI_3 - $\mathrm{H}_2\mathrm{O}$ - HCI от величины $\mathrm{Sc/CI}$.

Для идентификации комплексов в растворе был использован графический метод: химические сдвиги крайних форм – 0 м.д. для [Sc($\mathrm{H_2O}$) $_6$] $^{3+}$ и –249 м.д. для сигнала [ScCI $_6$] $^{3-}$, наблюдаемого в спектрах системы ScCI $_3$ – $\mathrm{CH_3CN}$ – ($\mathrm{C_2H_5}$) $_3$ N – HCI (рис. 3). График зависимости химичес-

ких сдвигов от отношения Sc/CI имеет перегибы при -42 м.д. и \sim 86 м.д., что соответствует значениям химических сдвигов катионов $[Sc(H_2O)_5CI]^{2+}$ и $[Sc(H_2O)_4CI_2]^{+}$. Следует допустить, что в растворах $ScCI_3 - H_2O$ – HCI при концентрации HCI \sim 4н и \sim 7н основной формой является моно- или дихлороаквакомплекс скандия (Ш).

В сильно солянокислых растворах (>IOH) Sc(Ш) находится в виде аниона [Sc(H $_2$ O) $_2$ CI $_4$] $^-$. Однако получить комплекс, не содержащий молекул H $_2$ O, а именно [ScCI $_6$] $^{3-}$, в водных растворах не удается. Скорее всего, это является следствием более сильных донорных свойств воды по отношению к Sc(Ш) по сравнению с ацидолигандом (СI $^-$).

выводы.

I. Методом ЯМР IH. 27AI. 35CI. 45Sc и 69,7ICa изучено комплексообразование АІ(Ш), Са(Ш) и Сс(Ш) в неводных растворах, содержащих галогениды M(Ш) и конкурирующие ацидо- и молекулярные лиганды, что позволило установить сходство и различие АІ (Ш), ва (Ш) и Вс (Ш), определить факторы, влияющие на равновесие между гекса- и тетракоординационными формами алюминия и галлия. Выявлены лиганды, преимущественно входящие в координационную сферу AI (Ш) и Ga (Ш) тетраэдрического или эктаэдрического строения, что имеет значение для суждения о природе конфигурационной лабильности. Рассмотрена зависимость состояния АІ(Н), ба(Ш) и Бс(Ш) в растворах от анионной и катионной сольватации. В спиртовых растворах галогенидов алюминия и галлия обнаружено существование устойчивых сольватно-разделенных ионных пар, что использовано для объяснения скоростей обмена координированных молекул ROH. Проявление спин-спинового взаимодействия между квадрупольными ядрами 27 AI $^{-14}$ N и 71 Ga $^{-14}$ N позволило сделать однозначный вывод о характере координации NCS- и NCO-групп, составе и строении разнолигандных анионных комплексов АІ(Ш) и Са(Ш). Сопоставлены донорные свойства N.N-дизамещенных амидов кислот по отношению к скандию и предложено применять для оценки донорной способности лигандов величины химических сдвигов FMP^{45} с катионов $\mathrm{IScL}_{6}\mathrm{I}^{3+}$.

- 2. Показано, что в результате диспропорционирования галогенидов алюминия в ацетонитриле, бензонитриле и адипонитриле в растворах в равновесии находятся анионы [AIX4] и катионы [AIL $_6$] $^{3+}$ (X= $_{\rm CI}$, Br $^+$; L=CH3CN, C $_6$ H5CN, NC(CH2)4CN), которые могут образовывать ионные ассоциаты. Концентрация и прочность ионных ассоциатов определяется в основном размерами и электронным строением молекулы нитрила. Наиболее устойчивые ассоциаты существуют в растворе ацетонитрила, причем взаимодействие [AIL $_6$] $^{3+}$ с анионом приводит к замедлению обмена молекул СН3CN в первой координационной сфере AI(Ш).
- 3. Оонаружено, что при введении роданида и цианата калия в ацетонитрильные растворы галогенидов алюминия и галлия происходит замещение ионов галогена в $[MX_4]^-$ на ионы NCS и, в меньшей степени, NCO , причем в растворе образуются тетракоординационные смешанные анионы $[MX_{4-n}Y_n]^-$ (M=AI, Ga; X=CI , Br , I ; Y=NCS , NCO). Доказано, что координация NCS и NCO осуществляется через атом азота. Общей чертой AI(Ш) и Ga(Ш) в изученных системах является стабилизация тетраэдрической конфигурации координационной сферы при наличии в ней ионов галогена. Замена X в $[AIX_4]^-$ на NCS-группу приводит к увеличению координационного числа AI(Ш) до шести. В отличие от растворов, содержащих AI(Ш), в случае Ga(Ш) ионы X не вытесняются полностью из внутренней сферы $[GaX_{4-n}$ (NCS) $_n]^-$, что обусловлено, повидимому, меньшей прочностью связи Ga-NCS по сравнению с AI-NCS.
- 4. На основании анализа величин полностью приведенных КССВ $^{27}\mathrm{AI}^{-14}\mathrm{N}$ и $^{71}\mathrm{Ga}^{-14}\mathrm{N}$ было определено, что вклад валентных s-электронов в связь металл-азот возрастает при увеличении числа NCS-групп в координационной сфере [MCI_{4-n} (NCS) $_{n}$] и при переходе от Ga (Ш) к AI (Ш). Рассмотрение известных структурных данных позволило сделать

вывод о наличии в случае хлороизотиоцианатных комплексов AI(Ш) и Ga(Ш) корреляции между S-характером связи M-N и ее прочностью.

5. Установлено, что в системах MX_3 — CH_3CN — ROH (M = AI, Ga; ROH = CH_3OH , C_2H_5OH ; X = CI^- , Br^-) в равновесии находятся гекса— и тетракоординационные комплексы, $[M](CH_3CN)_{6-n}(ROH)_n]^{3+}$ и $[MX_{4-n}(ROH)_n]^{n-1}$, соотношение между которыми изменяется при увеличении значения R = ROH/M(II). Введение спирта в растворы хлорида алюминия в ацетонитриле способствует диссоциации $[AICI_4]^-$ и смещению равновесия в сторону гексакоординационных форм, поэтому образование хлороспиртовых комплексов $[AICI_{4-n}(ROH)_n]^{n-1}$ идет в меньшей степени, чем в растворах $GaCI_3$. На этом основании был сделан вывод, что в тетракоординационных комплексах Ga(II) молекулы спирта и ионы хлора более совместимы, чем в координационной сфере AI(III) такого же строения.

Показано, что вода и спирты проявляют различную способность к комплексообразованию с AI(Ш) и Ga(Ш) в зависимости от конфигурации образующегося комплекса. Построены ряды лигандов по их способности к замещению $\mathrm{CH_3CN}$ или X в комплексах с координационным числом M(Ш) 4 и 6. Найдено, что донорный ряд для галлия(Ш) в гексакоординационном окружении – $\mathrm{H_2O} > \mathrm{C_2H_5OH} > \mathrm{CH_3CN} > \mathrm{CI}^-$ отличается от последовательности лигандов в случае тетраэдрических форм: $\mathrm{C_2H_5OH} > \mathrm{H_2O} > \mathrm{CI}^- > \mathrm{CH_3CN}$. Для комплексов AI(Ш) с координационным числом 6 склонность к замещению $\mathrm{CH_3CN}$ уменьшается в ряду $\mathrm{C_2H_5OH} > \mathrm{H_2O} > \mathrm{CH_3OH} > \mathrm{CI}^-$, Br B случае тетражоординационных комплексов AI(Ш) донорный ряд лигандов имеет следующий вид: $\mathrm{C_2H_5OH} > \mathrm{CH_3OH} > \mathrm{H_2O} > \mathrm{CI}^-$, Br > $\mathrm{CH_3CN}$.

6. Изучены растворы галогенидов алюминия и галлия в метаноле и этаноле. Установлено, что в метанольном растворе 100%, а в растворах этилового спирта – 85% AI(Ш) связано в комплексе [AI(ROH)₆] $^{3+}$; ~I5% AI(Ш) образуют тетракоординационный комплект [AICI($\mathbf{C}_2\mathbf{H}_5\mathbf{OH})_3$] $^{2+}$

Для галлия более характерно сохранение связи Ga-CI, в следствие чего в растворе ${\rm GaCI}_3$ -CH $_3$ OH, наряду с ${\rm [Ga(CH}_3{\rm OH)}_6{\rm]}^{3+}$, присутствуют также хлорометанольные комплексы и значительные комичества ${\rm [GaCI}_4]$.

Отличительной чертой спиртовых растворов галогенидов алюминия и галлия является образование сольватно-разделенных ионных пар за счет водородных связей ОН-групп и ван-дер-ваальсова взаимодействия CH_{2} - и CH_{3} -групп координированных молекул спирта с ионами галогенов. Прочность и концентрация ионно-парных комплексов $\{[\mathrm{M}(\mathrm{ROH})_{6}]X\}^{2+}$ определяется сольватирующей способностью спирта по отношению к $\mathrm{M}(\mathrm{M})$ и X^{-} , размерами X^{-} , а также пространственным расположением цепей координированных молекул ROH . Сделано предположение, что существование в спиртовых растворах сольватно-разделенных ионных пар со временем хизни IO^{-3} - IO^{-4} сек. способствует замедлению обмена молекул спирта в первой координационной сфере $\mathrm{AI}(\mathrm{M})$ и $\mathrm{Ga}(\mathrm{M})$.

- 7. Из растворов AIX_3 -CH $_3$ CN-ROH и AIX_3 -ROH выделены кристаллические сольвати следующих составов: $AICI_3$ -6CH $_3$ OH, $AICI_3$ -4ROH и $AIBr_3$ -6ROH (ROH = CH $_3$ OH, C $_2$ H $_5$ OH). Выявлено, что состав кристаллических соединений определяется в основном сольватирующими свойствами спиртов и прочностью связи AI-X.
- 8. Исследование системы $ScCI_3$ -CH $_3$ CN-KNCS показало, что $Sc(\mathbb{H})$ в растворе находится в виде гексакоординационных комплексов различного состава, в образовании ксординационной сферы которых участвуют все три конкурирующих лиганда, CI $^-$, NCS $^-$ и CH $_3$ CN. Сделан вывод, что в отличие от аналогичных систем AI(\mathbb{H}) и $Ga(\mathbb{H})$, в растворах $ScCI_3$ донорная способность ацетонитрила и ацидолигандов сопоставима, в следствие чего комплексы, содержащие, наряду с CI $^-$ и NCS $^-$, молекулы CH $_3$ CN, и анионы $[ScCI_{6-n}(NCS)_n]^{3-}$ (n=4, 5, 6) имеют константы устойчивости одного порядка.
 - 9. Установлено, что в результате взаимодействия ScCI3 с N,N -

диметиламидами кислот (L) в растворах ацетонитрила образуются гексакоординационные комплексы $[ScCI_{6-n}L_n]^{n-3}$ (n=2-6); в случае ТММ и ГМФА зафиксированы также формы, содержащие кроме СГи L молекулы СН $_3$ СМ. Найдено, что в соответствии с изменением величин химических сдвигов сигналов ЯМР. 45 С катионов $[ScL_6]^{3+}$ донорная активность лигандов по отношению к Sc(III) возрастает в ряду: $IM\Phi A < IMAA < IMMA < IMMA < IM<math>\Phi A < IMAA < IM$

10. Изучены растворы ScCI₃-H₂O-HCI. Определена зависимость состава гексакоординационных хлороаквакомплексов Sc(Ш) от концентрации соляной кислоты в растворе. Показано, что в сильно солянокислых растворах (≽ІОн) Sc(Ш) не присоединяет более четырех ионов СІ¬, и основной формой является анион [ScCI₄(H₂O)₂]¬.

,II. На основании экспериментальных значений химических сдвигов линий ЯМР 27 АІ. 69 , 71 Ga анионов [МХ $_{4-n}$ У $_{n}$] и сигналов ЯМР 645 Sc гексакоординационных комплексов Sc(II) определены, соответственно, либо парные параметры O(I) для O(I) = O(I) ВO(I) , O(I) , O(

Основное содержание диссертации изложено в работах:

- І. Буслаев Ю.А., Тарасов В.П., Петросянц С.П., Киракосян Г.А. "Конфигурационная лабильность и реакции комплексообразования четырехи шестикоординационных соединений алюминия (Ш) и галлия (Ш) в растворах". Координационная химия, 1977, 3, с.1316-1327.
- 2. Киракосян Г.А., Петросянц С.П., Тарасов В.П., Буслаев D.А. Анионные галогенид-тиоцианатные комплексы галлия (Ш) и скандия (Ш)". Тезисы республиканской конференции по химии и технологии редких, цветных металлов и солей. (Фрунзе, 1977 г.), с.195-196.

- 3. Буслаев Ю.А., Петросянц С.П., Киракосян Г.А., Тарасов В.П.

 "Конфигурационная лабильность и реакции комплексообразования четырех- и шестикоординационных соединений алюминия(Ш) и галлия (Ш) в растворах". Тезисы XI Всесоюзного совещания по физическим и математическим методам в координационной химии. (Кишинев, 1977 г.), с.82.
- 4. Буслаев Ю.А., Тарасов В.П., Петросянц С.П., Киракосян Г.А. "Особенности взаимодействия иона хлора с координированными мо-лекулами спирта в растворах хлоридов алюминия и галлия". Доклады АН СССР, 1978, 241, с.838-841.
- Буслаев Ю.А., Петросянц С.П., Киракосян Г.А. "Сольваты хлорида и бромида алюминия с метиловым и этиловым спиртами". Координационная химия, 1978, 4, с.1275-1276.
- 6. Tarasov V.P., Petrosyants S.P., Kirakosyan G.A., Buslaev Yu.A.
 "Spin Coupling Constants ²⁷Al-¹⁴N and ⁷¹Ga-¹⁴N". Abstracts of XXth Congress AMPERE. (Tallinn, 1978), D2504.
- 7. Tarasov V.P., Petrosyants S.P., Kirakosyan G.A., Buslaev Yu.A.

 "Spin Coupling Constants 27Al-14N and 71Ga-14N". Magnetic Resonance and Related Phenomena. Proceedings of XXth Congress

 AMPERE. (Tallinn, 1978). Springer-Verlag. Berlin, Heidelberg,

 New York, 1979, p. 505.
- 8. Буслаев D.A., Тарасов В.П., Петросянц С.П., Киракосян Г.А. "Образование контактных и сольватно-разделенных ионных пар в растворах галогенидов алюминия и галлия в спиртах". Координационная химия, 1978, 4, с.1346-1355.
- 9. Тарасов В.П., Петросянц С.П., Киракосян Г.А., Буслаев D.А."Хи-мические сдвиги ЯМР 27AI, 69,7IGa и константы спин-спинового взаимодействия 27AI-14N, 7IGa-14N в роданидо- и цианатогалогенидных комплексах алюминия и галлия". Доклады АН СССР, 1978, 242,

c. 156-159.

- 10. Тарасов В.П., Петросянц С.П., Киракосян Г.А., Буслаев D.А. "Константы спин-спинового взаимодействия ²⁷AI-¹⁴N и ^{7I}Ga-¹⁴N". Тезисы семинара по радиоспектроскопическим методам исследования неорганических и координационных соединений. (Краснодар, 1978 г.), с.27.
- II. Тарасов В.П., Петросянц С.П., Киракосян Г.А., Буслаев D.А.
 "Строение разнолигандных анионных комплексов алюминия (Ш) и галлия (Ш) в растворе". Координационная химия, 1980, 6, с.52-60.
- 12. Буслаев Ю.А., Киракосян Г.А., Тарасов В.П. "Исследование состояния $Sc(\mathbb{H})$ в неводных растворах методом ЯМР ^{45}Sc высокого разрешения". Координационная химия, 1980, 6, с.361-371.

Зак. №24 т 00623 тир. 150 Подписано к печати 6-3-80г.

ПМУ Опытного завода ВНИХИ